Alcock, L., & Inglis, M. (2008). Doctoral students’ use of examples in evaluating and proving conjectures.

*Educational Studies in Mathematics, 69*, 111–129.

CrossRefBall, D. L., Hoyles, C., Jahnke, H. N., & Movshovitz-Hadar, N. (2002). The teaching of proof. In *Proceedings of the International Congress of Mathematicians* (Vol. 3, pp. 907–920).

Bell, A. W. (1976). A study of pupils’ proof-explanations in mathematical situations.

*Educational Studies in Mathematics, 7*(1), 23–40.

CrossRefBransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (1999). *How people learn: Brain, mind, experience, and school*. Washington, DC: National Academy Press.

Burton, L. (1999). The practices of mathematicians: What do they tell us about coming to know mathematics?

*Educational Studies in Mathematics, 37*, 121–143.

CrossRefChi, M. (1997). Quantifying qualitative analyses of verbal data: A practical guide.

*Journal of the Learning Sciences, 6*(3), 271–315.

CrossRefClement, J. (2000). Analysis of clinical interviews: Foundations & model viability. In R. Lesh (Ed.), *Handbook of research methodologies for science and mathematics education* (pp. 341–385). Hillsdale, NJ: Lawrence Erlbaum.

Cuoco, A., Goldenberg, E. P., & Mark, J. (1996). Habits of mind: An organizing principle for mathematics curricula.

*Journal of Mathematical Behavior, 15*, 375–402.

CrossRefde Villiers, M. (1990). The role and function of proof in mathematics. *Pythagoras, 24*(1), 17–24.

Duffin, J., & Simpson, A. (2000). A search for understanding.

*The Journal of Mathematical Behavior, 18*(4), 415–427.

CrossRefEricsson, K. A., & Simon, H. A. (1984). *Protocol analysis: Verbal reports as data*. Cambridge, MA: MIT Press.

Glaser, B. G., & Strauss, A. L. (1977). *The discovery of grounded theory: Strategies for qualitative research*. London: Aldine.

Gray, E., Pinto, M. M. F., Pitta, D., & Tall, D. (1999). Knowledge construction and diverging thinking in elementary & advanced mathematics.

*Educational Studies in Mathematics, 38*(1), 111–133.

CrossRefHanna, G., & Barbeau, E. (2008). Proofs as bearers of mathematical knowledge.

*ZDM, 40*(3), 345–353.

CrossRefHanna, G., & de Villiers, M. (2008). ICMI study 19: Proof and proving in mathematics education.

*ZDM, 40*, 329–336.

CrossRefHatano, G., & Inagaki, K. (1986). Two courses of expertise. In H. William Stevenson, & K. H. Hiroshi Azuma (Eds.), *Child development and education in Japan* (pp. 262–272). San Francisco, CA: W. H. Freeman.

Hersh, R. (1993). Proving is convincing and explaining.

*Educational Studies in Mathematics, 24*(4), 389–399.

CrossRefInglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification.

*Educational Studies in Mathematics, 66*, 3–21.

CrossRefLakatos, I. (1976). *Proofs and refutations: The logic of mathematical discovery*. Cambridge, UK: Cambridge University Press.

Mejia-Ramos, J. P., & Inglis, M. (2009). Argumentative and proving activities in mathematics education research. In F. L. Lin, F. J. Hsieh, G. Hanna, & M. de Villiers (Eds.), *Proceedings of the international commission on mathematical instruction study 19, proof and proving in mathematics education* (Vol. 2, pp. 88–93). Taipei, Taiwan: The Department of Mathematics, National Taiwan Normal University.

Michener, E. R. (1978). Understanding understanding mathematics.

*Cognitive Science, 2*, 361–383.

CrossRefNCTM (1989). *Curriculum and evaluation standards for school mathematics*. Reston, VA: The National Council of Teachers of Mathematics.

Papert, S. (1971). On making a theorem for a child. *Paper presented at the ACM Annual Conference, Boston, MA*.

Papert, S. (1993). *The children’s machine: Rethinking school in the age of the computer*. New York: Basic Books.

Patel, V. L., & Groen, G. (1991). The specific and general nature of medical expertise: A critical look. In K. A. Ericsson, & J. Smith (Eds.), *Toward a general theory of expertise: Prospects and limits*. Cambridge, UK: Cambridge University Press.

Rav, Y. (1999). Why do we prove theorems? *Philosophia Mathematica, 7*(1), 5–41.

Roth, W. M., & Bowen, G. M. (2003). When are graphs worth ten thousand words? An expert–expert study.

*Cognition and Instruction, 21*(4), 429–473.

CrossRefSchoenfeld, A. H. (1985). *Mathematical problem solving*. Orlando, FL: Academic Press.

Sierpinska, A. (1994). *Understanding in mathematics*. Bristol, PA: The Falmer Press, Taylor & Francis Inc.

Skemp, R. R. (1976). Relational understanding and instrumental understanding. *Mathematics Teaching, 77*, 20–26.

Stanford, T. (1998).

*Found observations of n-triviality and Brunnian links*.

http://arxivorg/abs/math/9807161.

Stylianou, D. A., & Silver, E. A. (2004). The role of visual representations in advanced mathematical problem solving: An examination of expert-novice similarities and differences.

*Mathematical Thinking and Learning, 6*(4), 353–387.

CrossRefTall, D. (2001). Relationships between embodied objects and symbolic procepts: An explanatory theory of success and failure in mathematics. In M. van den Heuvel-Panhuizen (Ed.), *Proceedings of the 25th conference of the International Group for the Psychology of Mathematics Education* (Vol. 3, pp. 65–72). Utrecht, The Netherlands: PME.

Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. *Advanced Mathematical Thinking, 11*, 65–81.

Watson, A., & Mason, J. (2002). Student-generated examples in the learning of mathematics.

*Canadian Journal of Science, Mathematics and Technology Education, 2*(2), 237–249.

CrossRefWeber, K., & Alcock, L. (2004). Semantic and syntactic proof productions.

*Educational Studies in Mathematics, 56*(2/3), 209–234.

CrossRefWilensky, U. (1991). Abstract meditations on the concrete and concrete implications for mathematics education. In I. Harel, & S. Papert (Eds.), *Constructionism* (pp. 193–203). Norwood, NJ: Ablex.

Wilensky, U. (1993). *Connected mathematics: Building concrete relationships with mathematical knowledge*. Ph.D. thesis, MIT.

Wineburg, S. (1997). Reading Abraham Lincoln: An expert/expert study in the interpretation of historical texts.

*Cognitive Science, 22*(3), 319–346.

CrossRef