Skip to main content
Log in

Biomarkers of ecotoxicological oxidative stress in an urban environment: using evergreen plant in industrial areas

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Plants react to air pollution by increased production of reactive oxygene species and oxidative stress, which triggers multiple defense mechanisms. In this study, some parameters that serve as biomarkers for antioxidative defense, such as glutathione S-transferase (GST) activity, glutathione (GSH), malondialdehyde, chlorophyll and total soluble protein contents, were investigated on the needles of Cedrus libani (A. Rich.) grown around two industrial areas in Eskisehir. The measurements revealed that metabolism in needles of C. libani trees is largely directed towards defence against ROS, due to effects of air pollution in the sampling areas. We observed significant increases in all parameters, except chlorophyll contents, which were strongly decreased. However, these sharp changes were also prominent not only between sampling sites and control site, but also among the areas investigated, suggesting the quantitative influence of the extent of pollution. Together with total soluble protein contents, the correlation between GST activities and GSH contents suggests that damage due to oxidative stress was most probably reduced due to the increased antioxidant capacity. Therefore, we can suggest C. libani as a good model for biomonitoring atmospheric quality with the oxidative stress parameters providing an effective measure for early environmental assessment due to their sensitivities of even low levels of pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Method Enzymol 113:548–554

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplast, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Baycu G, Tolunay D, Ozden H, Gunebakan S (2006) Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environ Pollut 143:545–554

    Article  CAS  Google Scholar 

  • Borghi M, Tognetti R, Monteforti G, Sebastiani L (2008) Responses of two poplar species (Populus alba and Populus x canadensis) to high copper concentrations. Environ Exp Bot 62:290–299

    Article  CAS  Google Scholar 

  • Boydak M, Çalıkoğlu M (2008) Toros Sedirinin (Cedrus libani A. Rich.) Biyolojisi ve Silvikültürü. OGEM-VAK Yayınları, Ankara (in Turkish)

  • Cakir A, Oztetik E (2010) Seasonal effects on glutathione S-transferase enzyme activities and glutathione levels in Cedrus libani A. Rich Needles Turkish Biochem Journal, 2010, vol 35, Special Issue S1. XXII. National Biochemistry Congress, Eskisehir, Turkey, 27–30 October 2010

  • Christ B, Egert A, Süssenbacher I, Kräutler B, Bartels D, Peters S, Hörtensteiner S (2014) Water deficit induces chlorophyll degradation via the ‘PAO/phyllobilin’ pathway in leaves of homoio- (Craterostigma pumilum) and poikilochlorophyllous (Xerophyta viscosa) resurrection plants. Plant Cell Environ 37:2521–2531

    Article  CAS  Google Scholar 

  • Çınar H (2003) Preparation of emission inventories and GIS-supported mapping of air pollution in Eskişehir. Dissertation, Anadolu University, Eskişehir, Turkey

  • Clijsters H, Cuypers A, Vangronveld J (1999) Physiological responses to heavy metals in higher plants: defense against oxidative stress. Z Naturforsch 54c:730–734

    Google Scholar 

  • Dewir YH, Chakrabarty D, Ali MB, Hahn EJ, Paek KY (2006) Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots. Environ Exp Bot 58:93–99

    Article  CAS  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3(3):3004.1–3004.10

    Article  Google Scholar 

  • Doganlar ZB, Atmaca M (2011) Influence of airborne pollution on Cd, Zn, Pb, Cu, and Al accumulation and physiological parameters of plant leaves in Antakya (Turkey). Water Air Soil Pollut 214:509–523

    Article  CAS  Google Scholar 

  • Dziri S, Hosni K (2012) Effects of cement dust on volatile oil constituents and antioxidative metabolism of Aleppo pine (Pinus halepensis) needles. Acta Physiol Plant 34:1669–1678

    Article  CAS  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    Article  CAS  Google Scholar 

  • Eskisehir Metropolitan Municipality Website (2011) http://www.eskisehir-bld.gov.tr/eng/eskisehir_cog.php. Accessed 07 July 2014

  • Eskisehir Organized Industrial Zone Website (2014) http://www.eosb.org.tr. Accessed 15 July 2014

  • Fargasova A (2001) Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots. Biol Plant 44:471–473

    Article  CAS  Google Scholar 

  • Fischer BB, Hideg E, Krieger-Liszkay A (2013) Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal 18:2145–2162

    Article  CAS  Google Scholar 

  • Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128:501–523

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygenin chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005a) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005b) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  Google Scholar 

  • Foyer CH, Theodoulou FL, Delrot S (2001) The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci 6:486–492

    Article  CAS  Google Scholar 

  • Gaga EO, Dogeroglu T, Ozden O, Ari A, Yay OD, Altug H, Akyol N, Ornektekin S, Doorn WV (2012) Evaluation of air quality by passive and active sampling in an urban city in Turkey: current status and spatial analysis of air pollution exposure. Environ Sci Pollut Res 19:3579–3596

    Article  CAS  Google Scholar 

  • Ganesh KS, Baskaran L, Rajasekaran S, Sumathi K, Chidambaram ALA, Sundaramoorthy P (2008) Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloid Surface B63:159–163

    Article  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143:81–96

    Article  Google Scholar 

  • Germ M, Kreft I, Osvald J (2005) Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiol Biochem 43:445–448

    Article  CAS  Google Scholar 

  • Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MdM, Fujita M (2012) Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 6:1314–1323

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Iannone MF, Groppa MD, Benavides MP (2015) Cadmium induces different biochemical responses in wild type and catalase-deficient tobacco plants. Environ Exp Bot 109:201–211

    Article  CAS  Google Scholar 

  • Jasinska AK, Boratynska K, Sobierajska K, Romo A, Ok T, Kharat MBD, Boratynski A (2013) Relationships among Cedrus libani, C. brevifolia and C. atlantica as revealed by the morphological and anatomical needle characters. Plant Syst Evol 299:35–48

    Article  Google Scholar 

  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stres. Acta Physiol Plant 30:81–89

    Article  CAS  Google Scholar 

  • Kupper H, Kupper F, Spiller M (1998) In situ detection of heavy metal substituted chlorophyll in water plants. Phytosynth Res 58:123–133

    Article  CAS  Google Scholar 

  • Levine RL, Willians JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–363

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    CAS  Google Scholar 

  • Liu X, Zhang S, Shan X, Christie P (2007) Combined toxicity of cadmium and arsenate to wheat seedlings an plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination. Ecotoxicol Environ Saf 68:305–313

    Article  CAS  Google Scholar 

  • Loizzo MR, Saab AM, Statti GA, Menichini F (2007) Composition and α-amylase inhibitory effect of essential oils from Cedrus libani. Fitoterapia 78:323–326

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 248:265–275

    Google Scholar 

  • Lukjanova A, Mandre M (2010) Effects of alkalization of the environment on the anatomy of Scots pine (Pinus sylvestris) needles. Water Air Soil Pollut 206:13–22

    Article  CAS  Google Scholar 

  • Manning WJ, Krupa SV (1992) Experimental methodology for studying the effects of ozone on crops and trees. In: Lefohn AS (ed) Surface level ozone exposures and their effects on vegetation. Lewis Publishers, Chelsea, pp 93–156

    Google Scholar 

  • Mehlhorn H, Seufert G, Sehmidt A, Kunert KJ (1986) Effect of SO2 and O3 on production of antioxidants in conifers. Plant Physiol 82:336–338

    Article  CAS  Google Scholar 

  • Meister A (1994) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269:9397–9400

    CAS  Google Scholar 

  • Ministry of Environment and City Planning Website. http://www.csb.gov.tr/dosyalar/images/file/hkd2011-12kıssezonubltn.pdf. Accessed 15 Nov 2013

  • Møller IM, Sweetlove L (2010) ROS signaling—specificity is required. Trends Plant Sci 15:370–374

    Article  Google Scholar 

  • Moons A (2005) Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Horm 72:155–202

    Article  CAS  Google Scholar 

  • Noctor G, Lelarge-Trouverie C, Mhamdi A (2014) The metabolomics of oxidative stress. Phytochemistry. doi:10.1016/j.phytochem.2014.09.002

  • O’Brien JA, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–779

    Article  Google Scholar 

  • Onder S, Dursun S (2006) Air borne heavy metal pollution of Cedrus libani (A. Rich.) in the city centre of Konya (Turkey). Atmos Environ 40:1122–1133

    Article  CAS  Google Scholar 

  • Ortega-Villasante C, Hernandez LE, Rellan-Alvarez R, Del Campo FF, Carpena-Ruiz RO (2007) Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol 176:96–107

    Article  CAS  Google Scholar 

  • Ozden O, Dogeroglu T, Kara S (2008) Assessment of ambient air quality in Eskisehir, Turkey. Environ Int 34:678–687

    Article  CAS  Google Scholar 

  • Oztetik E (2005) Purification of glutathione S-transferases and genetic characterization of zeta isozyme from Pinus brutia, Ten. Dissertation, Middle East Technical University, Ankara, Turkey

  • Oztetik E (2010) Effects of tribenuron-methyl treatment on glutathione S-transferase (GST) activities in some wheat and barley varieties. Pure Appl Chem 82:289–297

    Article  CAS  Google Scholar 

  • Oztetik E (2012) An introduction to oxidative stress in plants and the role of non-enzymatic antioxidants. In: Anjum NA, Umar S, Ahmad A (eds) Oxidative stress in plants: causes, consequences and tolerance. IK Publications, New Delhi, pp 1–50

    Google Scholar 

  • Oztetik E, Cicek A (2011) Effects of urban air pollutants on elemental accumulation and identification of oxidative stress biomarkers in the transplanted lichen Pseudovernia furfuracea. Environ Toxicol Chem 30:1629–1636

    Article  CAS  Google Scholar 

  • Oztetik E, Iscan M (2013) Characterization of glutathione S-transferases from needles of Pinus brutia Ten. trees. Fresenius Environ Bull 22:516–523

    CAS  Google Scholar 

  • Palmieri RM, Pera LL, Di Bella G, Dugo G (2005) Simultaneous determination of Cd (II), Cu (II), Pb (II) and Zn (II) by derivative stripping chronopotentiometry in Pittosporum tobira leaves: a measurement of local atmospheric pollution in Messina (Sicily, Italy). Chemosphere 59:1161–1168

    Article  Google Scholar 

  • Pukacka S, Pukacki PM (2000a) Seasonal changes in antioxidant level of Scots pine (Pinus sylvestris L.) needles exposed to industrial pollution. I. Ascorbate and thiol content. Acta Physiol Plant 22:451–456

    Article  CAS  Google Scholar 

  • Pukacka S, Pukacki PM (2000b) Seasonal changes in antioxidant level of Scots pine (Pinus sylvestris L) needles exposed to industrial pollution. II. Enzymatic scavengers activities. Acta Physiol Plant 22:457–464

    Article  CAS  Google Scholar 

  • Radotic K, Ducic T, Mutavdzic D (2000) Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113

    Article  CAS  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (1990) Biologia delle piante. Zanichelli, Bologna

    Google Scholar 

  • Sairam RK, Singh DV, Srivastava GC (2003) Changes in activities of antioxidant enzymes in sunflower leaves of different ages. Biol Plantarum 47:61–66

    Article  CAS  Google Scholar 

  • Sanchez-Rodriguez E, Rubio-Wilhelmi MM, Cervilla LM (2010) Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci 178:30–40

    Article  CAS  Google Scholar 

  • Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K (2011) Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut 159:3560–3570

    Article  CAS  Google Scholar 

  • Schröder P, Wolf AE (1996) Characterization of glutathione S-transferases in needles of Norway spruce trees from a forest decline stand. Tree Physiol 16:503–508

    Article  Google Scholar 

  • Schröder P, Fischer C, Debus R, Wenzel A (2003) Reaction of detoxification mechanisms in suspension cultured Spruce cells (Picea abies L. KARST.) to heavy metals in pure mixture and in soil eluates. Environ Sci Pollut Res 10:225–234

    Article  Google Scholar 

  • Schulz H, Härtling S (2001) Biochemical parameters as biomarkers for the early recognition of environmental pollution on Scots pine trees. II. The antioxidative metabolites ascorbic acid, glutathione, α-tocopherol and the enzymes superoxide dismutase and glutathione reductase. Z Naturforsch 56c:767–780

    Google Scholar 

  • Schupp R, Rennenberg H (1992) Changes in sulphur metabolism during needle development of Norway spruce. Bot Acta 105:180–189

    Article  CAS  Google Scholar 

  • Sprtova M, Marek MV, Nedbal L, Prasil O, Kalina J (1999) Seasonal changes of photosynthetic assimilation of Norway spruce under the impact of enhanced UV-B radiation. Plant Sci 142:37–45

    Article  CAS  Google Scholar 

  • Talukdar D (2013a) Bioaccumulation, growth and antioxidant defense responses of Leucaena species differing in arsenic tolerance. Int J Bot Res 3:1–18

    Google Scholar 

  • Talukdar D (2013b) Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plants 19:69–79

    Article  CAS  Google Scholar 

  • Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stres. Plant Cell Tissue Organ Cult 88:201–216

    Article  CAS  Google Scholar 

  • Tripathi AK, Gautam M (2007) Biochemical parameters of plants as indicators of air pollution. J Environ Biol 28:127–132

    CAS  Google Scholar 

  • Turkey Locomotive and Engine Industries Website (2014) http://www.tulomsas.com.tr. Accessed 15 June 2014

  • Turkish Statistical Institute Website (2012) Eskisehir by Selected Indexes 2012.http://www.tuik.gov.tr/ilGostergeleri/iller/ESKISEHIR.pdf. Accessed 15 June 2014

  • Turkish Statistical Institute Website (2013) Population of province/district centers and towns/villages and population growth rate by provinces, 2011–2012. http://www.turkstat.gov.tr. Accessed 15 Nov 2013

  • Valavanidis A, Zymi M, Stathopoulou D, Georgiou P, Ganotidis M (2004) Monitoring of ozone pollution and the physiological activity of Pinus halepensis (Mill.) by electron paramagnetic resonance and other parameters. Trees 18:630–638

    Article  CAS  Google Scholar 

  • Wannaz ED, Zygadlo JA, Pignata ML (2003) Air pollutants effect on monoterpenes composition and foliar chemical parameters in Schinus areira L. Sci Total Environ 305:177–193

    Article  CAS  Google Scholar 

  • Wingsle G, Hallgren J-E (1993) Influence of SO2 and NO2 exposure on glutathione, superoxide dismutase and glutathione reductase activities in Scots pine needles. J Exp Bot 44:463–470

    Article  CAS  Google Scholar 

  • Wouter G, Jaco V, Domy C, Lucien CV, Herman C (2002) Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiol Plant 115:377–384

    Article  Google Scholar 

  • Zeng Q-Y, Wang X-R (2006) Divergence in structure and function of tau class glutathione transferase from Pinus tabulaeformis, P. yunnanensis and P. densata. Biochem Syst Ecol 34:678–690

    Article  CAS  Google Scholar 

  • Zu YG, Wei XX, Yu JH, Li DW, Pang HH, Tong L (2011) Responses in the physiology and biochemistry of Korean pine (Pinus koraiensis) under supplementary UV-B radiation. Photosynthetica 49:448–458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. K. Özgür Peker for statistical analysis and Dr. Stanislav Kopriva for proofreading.

Conflict of interest

The author declares that there is no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Oztetik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oztetik, E. Biomarkers of ecotoxicological oxidative stress in an urban environment: using evergreen plant in industrial areas. Ecotoxicology 24, 903–914 (2015). https://doi.org/10.1007/s10646-015-1433-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1433-9

Keywords

Navigation