Skip to main content

Advertisement

Log in

Ecotoxicity of raw and treated effluents generated by a veterinary pharmaceutical company: a comparison of the sensitivities of different standardized tests

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Pharmaceutical effluents have recently been recognized as an important contamination source to aquatic environments and the toxicity related to the presence of antibiotics in effluents has attracted great attention. Conventionally, these effluents have been treated using physico-chemical and aerobic biological processes, usually with low rates of pharmaceuticals removal. Due to the complexity of effluents, it is impossible to determine all pharmaceuticals and their degradation products using analytical methods. Ecotoxicity tests with different organisms may be used to determine the effect level of effluents and thus their environmental impacts. The objective of this work was to compare the sensitivities of five ecotoxicity tests using aquatic and terrestrial organisms to evaluate the toxicity of effluents from the production of veterinary medicines before and after treatment. Raw and chemically treated effluent samples were highly toxic to aquatic organisms, achieving 100,000 toxic units, but only few of those samples presented phytotoxicity. We observed a reduction in the toxicity in the biologically treated effluent samples, which were previously chemically pre-treated, however the toxicity was not eliminated. The rank of test organisms’ reactions levels was: Daphnia similis > Raphidocelis subcapitata > Aliivibrio fischeri > Allium cepa ~ Lactuca sativa. Effluent treatment employed by the evaluated company was only partially efficient at removing the effluent toxicity, suggesting potential risks to biota. The acute toxicity test with D. similis proved to be the most sensitive for both raw and treated effluents and is a suitable option for further characterization and monitoring of pharmaceutical effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akintonwa A, Awodele O, Olofinnade AT, Anyakora C, Afolayan GO, Coker HAB (2009) Assessment of the mutagenicity of some pharmaceutical effluents. Am J Pharmacol Toxicol 4:144–150. doi:10.3844/ajptsp.2009.144.150

    Article  Google Scholar 

  • APHA—American Public Health Association (1998) Standard methods for the examination of water and wastewater (19th edn), Washington: American Public Health Association, American Water Works Association, and Water Pollution Control Federation

  • Arslan-Alaton I, Caglayan AE (2006) Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent. Ecotoxicol Environ Saf 63:131–140. doi:10.1016/j.ecoenv.2005.02.014

    Article  CAS  Google Scholar 

  • ABNT. Associação Brasileira de Normas Técnicas (2009) ABNT NBR 12713: ecotoxicologia aquática—toxicidade aguda—Método de ensaio com Daphnia spp. (Cladocera, Crustacea). Associação Brasileira de Normas Técnicas, Rio de Janeiro p 21

  • ABNT. Associação Brasileira de Normas Técnicas (2011) ABNT NBR 12648: Ecotoxicologia aquática—Toxicidade crônica—Método de ensaio com algas (Chlorophyceae). Associação Brasileira de Normas Técnicas. São Paulo, p 24

  • Awad YM, Kim SC, El-Azeem SAMA, Kim KH, Kim KR, Kim K, Jeon C, Lee SS, Ok YS (2014) Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environ Earth Sci 71:1433–1440. doi:10.1007/s12665-013-2548-z

    Article  CAS  Google Scholar 

  • Bakare AA, Okunola AA, Adetunji OA, Jenmi HB (2009) Genotoxicity assessment of a pharmaceutical effluent using four bioassays. Genet Mol Biol 32:373–381. doi:10.1590/S1415-47572009000200026

    Article  CAS  Google Scholar 

  • Balcioğlu IA, Ötker M (2003) Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere 50:85–95. doi:10.1016/S0045-6535(02)00534-9

    Article  Google Scholar 

  • Blaise C, Gagné F, Eullaffroy P, Férard J-F (2006) Ecotoxicity of selected pharmaceuticals of urban origin discharged to the Saint-Lawrence River (Québec, Canada): a review. Braz J Aquat Sci Technol 10:29–51. doi:10.14210/bjast

    Article  Google Scholar 

  • Boxall ABA, Kolpin DW, Halling-Sørensen B, Tolls J (2003) Are veterinary medicines causing environmental risks? Environ Sci Technol 37:286–294. doi:10.1021/es032519b

    Article  Google Scholar 

  • Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54:2288–2297. doi:10.1021/jf053041t

    Article  CAS  Google Scholar 

  • BRASIL (2011) Conselho Nacional do Meio ambiente—CONAMA. Resolução CONAMA no 430 de 13 de maio de 2011. Dispões sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente—CONAMA. D.O.U., 16 de maio de 2011

  • Burgess RM, Ho KT, Brack W, Lamoree M (2013) Effects-directed analysis (EDA) and toxicity identification evaluation (TIE): complementary but different approaches for diagnosing causes of environmental toxicity. Environ Toxicol Chem 32:1935–1945. doi:10.1002/etc.2299

    Article  CAS  Google Scholar 

  • Carlsson C, Johansson AK, Alvan G, Bergman K, Kühler T (2006) Are pharmaceuticals potent environmental pollutants? Part I: environmental risk assessments of selected active pharmaceutical ingredients. Sci Total Environ 364:67–87. doi:10.1016/j.scitotenv.2005.06.035

    Article  CAS  Google Scholar 

  • Carvalho PN, Pirra A, Basto MCP, Almeida CMR (2013) Activated sludge systems removal efficiency of veterinary pharmaceuticals from slaughterhouse wastewater. Environ Sci Pollut Res 20:8790–8800. doi:10.1007/s11356-013-1867-7

    Article  CAS  Google Scholar 

  • CETESB—Companhia Ambiental do Estado de São Paulo (2011) Guia nacional de coleta e preservações de amostras: água, sedimento, comunidades aquáticas e efluentes líquidos. CETESB, São Paulo

    Google Scholar 

  • Chen Z, Wang H, Chen Z, Ren N, Wang A, Shi Y, Li X (2011) Performance and model of a full-scale up-flow anaerobic sludge blanket (UASB) to treat the pharmaceutical wastewater containing 6-APA and amoxicillin. J Hazard Mater 185:905–913. doi:10.1016/j.jhazmat.2010.09.106

    Article  CAS  Google Scholar 

  • Costa CR, Olivi P, Botta CMR, Espindola ELG (2008) A toxicidade em ambientes aquáticos: discussão e métodos de avaliação. Quim Nova 31:1820–1830. doi:10.1590/S0100-40422008000700038

    Article  CAS  Google Scholar 

  • D’abrosca B, Fiorentino A, Izzo A, Cefarelli G, Pascarella MT, Uzzo P, Monaco P (2008) Phytotoxicity evaluation of five pharmaceutical pollutants detected in surface water on germination and growth of cultivated and spontaneous plants. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:285–294. doi:10.1080/10934520701792803

    Article  Google Scholar 

  • Eguchi K, Nagase H, Ozawa M, Endoh YS, Goto K, Hirata K, Miyamoto K, Yoshimura H (2004) Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57:1733–1738. doi:10.1016/j.chemosphere.2004.07.017

    Article  CAS  Google Scholar 

  • Environment Canada (2007) Biological test method: growth inhibition test using a freshwater alga. Environ Prot Ser. Report EPS 1/RM/25. Environment Canada

  • Farré M, Barceló D (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends Anal Chem 22:299–310. doi:10.1016/S0165-9936(03)00504-1

    Article  Google Scholar 

  • Ferreira DF (1999) Sistema de análise de variância (Sisvar). versão 4.6. Lavras; Universidade Federal de Lavras CD-ROM

  • Fick J, Söderström H, Lindberg RH, Phan C, Tysklind M, Larsson DGJ (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28:2522–2527. doi:10.1897/09-073.1

    Article  CAS  Google Scholar 

  • Gellert G (2000) Relationship between summarizing chemical parameters like AOX, TOC, TN, and toxicity tests for effluent from the chemical production. Bull Environ Contam Toxicol 65:508–513. doi:10.1007/s001280000153

    Article  CAS  Google Scholar 

  • Girotti S, Ferri EN, Fumo MG, Maiolini E (2008) Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta 608:2–29. doi:10.1016/j.aca.2007.12.008

    Article  CAS  Google Scholar 

  • Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, Liitzhøfl HHC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36:357–393. doi:10.1016/S0045-6535(97)00354-8

    Article  Google Scholar 

  • Hamilton MA, Russo RC, Thurfton RB (1977) Trimmed Spearman-Karber method for estimating median lethal concentration in toxicity bioassays. Environ Sci Technol 11:714–719. doi:10.1021/es60130a004

    Article  CAS  Google Scholar 

  • Hernando MD, Fernández-Alba AR, Tauler R, Barceló D (2005) Toxicity assays applied to wastewater treatment. Talanta 65:358–366. doi:10.1016/j.talanta.2004.07.012

    Article  CAS  Google Scholar 

  • Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342. doi:10.1016/j.talanta.2005.09.037

    Article  CAS  Google Scholar 

  • Hillis DG, Fletcher J, Solomon KR, Sibley PK (2011) Effects of ten antibiotics on seed germination and root elongation in three plant species. Arch Environ Contam Toxicol 60:220–232. doi:10.1007/s00244-010-9624-0

    Article  CAS  Google Scholar 

  • Hutchings M, Johnson I, Hayes E, Girling AE, Thain J, Thomas K, Benstead R, Whale G, Wordon J, Maddox R, Chown P (2004) Toxicity reduction evaluation, toxicity identification evaluation and toxicity tracking in direct toxicity assessment. Ecotoxicology 13:475–484. doi:10.1023/B:ECTX.0000035297.90620.73

    Article  CAS  Google Scholar 

  • Jelic A, Gros M, Ginebreda A, Cespedes-Sánchez R, Ventura F, Petrovic M, Barceló D (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45:1165–1176. doi:10.1016/j.watres.2010.11.010

    Article  CAS  Google Scholar 

  • Jones OAH, Voulvoulis N, Lester JN (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res 36:5013–5022. doi:10.1016/S0043-1354(02)00227-0

    Article  CAS  Google Scholar 

  • Jones OAH, Voulvoulis N, Lester JN (2004) Potential ecological and human health risks associated with the presence of pharmaceutically active compounds in the aquatic environment. Crit Rev Toxicol 34:335–350. doi:10.1080/10408440490464697

    Article  CAS  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13. doi:10.1016/j.ecolind.2007.06.002

    Article  CAS  Google Scholar 

  • Kim S, Aga DS (2007) Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J Toxicol Environ Health 10:559–573. doi:10.1080/15287390600975137

    Article  CAS  Google Scholar 

  • Krienitz L, Bock C, Nozaki H, Wolf M (2011) SSU rRNA gene phylogeny of morphospecies affiliated to the bioassay alga ‘‘Selenastrum capricornutum’’ recovered the polyphyletic origin of crescent-shaped chlorophyta. J Phycol 47:880–893. doi:10.1111/j.1529-8817.2011.01010.x

    Article  Google Scholar 

  • Larsson DGJ, Fick J (2009) Transparency throughout the production chain - a way to reduce pollution from the manufacturing of pharmaceuticals? Regul Toxicol Pharmacol 53:161–163. doi:10.1016/j.yrtph.2009.01.008

    Article  Google Scholar 

  • Larsson DGJ, Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755. doi:10.1016/j.jhazmat.2007.07.008

    Article  CAS  Google Scholar 

  • Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902. doi:10.1016/j.envpol.2009.05.051

    Article  CAS  Google Scholar 

  • Mascolo G, Balest L, Cassano D, Laera G, Lopez A, Pollice A, Salerno C (2010) Biodegradability of pharmaceutical industrial wastewater and formation of recalcitrant organic compounds during aerobic biological treatment. Bioresour Technol 101:2585–2591. doi:10.1016/j.biortech.2009.10.057

    Article  CAS  Google Scholar 

  • Maselli BS, Luna LAV, Palmeira JO, Barbosa S, Beijo LA, Umbuzeiro GA, Kummrow F (2013) Ecotoxicidade de efluentes brutos e tratados gerados por uma fábrica de medicamentos veterinários. Rev Ambient Água 8:168–179. doi:10.4136/1980-993X

    Google Scholar 

  • Melo SAS, Trovó AG, Bautitz IR, Nogueira RFP (2009) Degradação de fármacos residuais por processos oxidativos avançados. Quim Nova 32:188–197. doi:10.1590/S0100-40422009000100034

    Article  CAS  Google Scholar 

  • Microtox Omni Software (1999) Azur environmental, Newark, Delaware, USA. http://www.sdimicrotox.com/pdf/MicrotoxOmni-Software-forWindows.pdf

  • Mitchell EJAK, Burgess JE, Stuetz RM (2002) Developments in ecotoxicity testing. Rev Environ Sci Biotechnol 1:169–198. doi:10.1023/A:1020842718996

    Article  CAS  Google Scholar 

  • Norbert-King TJ (1993) A linear interpolation method for sublethal toxicity: the inhibition concentration (ICp) approach (version 2.0). Dulunth: USEPA. Technical Report 03-93

  • OECD (2004) Daphnia sp. acute immobilization test. Organization for Economic Co-operation and Development—Guideline for testing of chemicals (202)

  • OECD (2006) Freshwater alga and Cyanobacteria, growth inhibition test. Organization for Economic Co-operation and Development—Guideline for testing of chemicals (201)

  • Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Sci Total Environ 409:4141–4166. doi:10.1016/j.scitotenv.2010.08.061

    Article  CAS  Google Scholar 

  • Pessala P, Schultz E, Nakari T, Joutti A, Herve S (2004) Evaluation of wastewater effluents by small-scale biotests and a fractionation procedure. Ecotoxicol Environ Saf 59:263–272. doi:10.1016/j.ecoenv.2003.10.002

    Article  CAS  Google Scholar 

  • Phillips PJ, Smith SG, Kolpin DW, Zaugg SD, Buxton HT, Furlong ET, Esposito K, Stinson B (2010) Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to waste water treatment plant effluents. Environ Sci Technol 44:4910–4916. doi:10.1021/es100356f

    Article  CAS  Google Scholar 

  • Power EA, Boumphrey RS (2004) International trends in bioassay use for effluent management. Ecotoxicology 13:377–398. doi:10.1023/B:ECTX.0000035290.89590.03

    Article  CAS  Google Scholar 

  • Ribeiro LO, Barbosa S, Balieiro FP, Beijo LA, Santos BR, Gouvea CMCP, Paiva LV (2012) Fitotoxicidade de extratos foliares de barbatimão [Stryphnodendron adstringens (Mart.) Coville] em bioensaio com alface. R bras Bioci 10:220–225

    Google Scholar 

  • Rodrigues LCA, Barbosa S, Pazin M, Maselli BS, Beijo LA, Kummrow F (2013) Fitotoxicidade e citogenotoxicidade da água e sedimento de córrego urbano em bioensaio com Lactuca sativa. Agriambi 17:1099–1108. doi:10.1590/S1415-43662013001000012

    Google Scholar 

  • Sanderson H, Brain RA, Johnson DJ, Wilson CJ, Solomon RK (2004) Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicology 203:27–40. doi:10.1016/j.tox.2004.05.015

    Article  CAS  Google Scholar 

  • Santos LHMLM, Araujo AN, Fachini A, Pena A, Deleruematos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95. doi:10.1016/j.jhazmat.2009.10.100

    Article  CAS  Google Scholar 

  • Simões MS, Madail RH, Barbosa S, Nogueira ML (2013) Padronização de bioensaios para detecção de compostos alelopáticos e toxicantes ambientais utilizando alface. Biotemas 26:29–36. doi:10.5007/2175-7925

    Article  Google Scholar 

  • Sreekanth D, Sivaramakrishna D, Himabindu V, Anjaneyulu Y (2009) Thermophilic treatment of bulk drug pharmaceutical industrial wastewaters by using hybrid up flow anaerobic sludge blanket reactor. Bioresour Technol 100:2534–2539. doi:10.1016/j.biortech.2008.11.028

    Article  CAS  Google Scholar 

  • Tambosi JL, Yamanaka LY, José HJ, Moreira RFPM (2010) Recent research data on the removal of pharmaceuticals from sewage treatment plants (STP). Quim Nova 33:411–420. doi:10.1590/S0100-40422010000200032

    Article  CAS  Google Scholar 

  • Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57:2823–2829. doi:10.1099/ijs.0.65081-0

    Article  CAS  Google Scholar 

  • Zhao D, Zhu C, Sun S, Yu H, Zhang L, Pan W, Zhang X, Yu H, Gu J, Cheng S (2007) Toxicity of pharmaceutical wastewater on male reproductive system of Mus musculus. Toxicol Ind Health 23:47–54. doi:10.1177/0748233707077446

    Article  Google Scholar 

  • Zounková R, Klimešvá Z, Nepejchalová L, Hilscherová K, Bláha L (2011) Complex evaluation of ecotoxicity and genotoxicity of antimicrobials oxytetracycline and flumequine used in aquaculture. Environ Toxicol Chem 30:1184–1189. doi:10.1002/etc.486

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Project no 475243/2011-0). Maselli BS thanks Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for the scholarship granted. We also thank to Dr. Eldridge ML for helpful comments on this manuscript.

Conflict of interest

The authors declare that there are no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Kummrow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maselli, B.d.S., Luna, L.A.V., Palmeira, J.d.O. et al. Ecotoxicity of raw and treated effluents generated by a veterinary pharmaceutical company: a comparison of the sensitivities of different standardized tests. Ecotoxicology 24, 795–804 (2015). https://doi.org/10.1007/s10646-015-1425-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1425-9

Keywords

Navigation