Skip to main content
Log in

The impact of management strategies in apple orchards on the structural and functional diversity of epigeal spiders

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Apple orchards are agro-ecosystems managed with high levels of inputs and especially pesticides. Epigeal spider communities were sampled in three seasons using pitfall traps in 19 apple orchards with four different management strategies (abandoned, under organic, Integrated Pest Management or conventional protection) and thus significantly different pesticide usage. The abundance and diversity of the spider communities was the highest in abandoned orchards. Higher diversity and evenness values were the only difference in spider communities from the organic orchards compared to the other commercial orchards. The analysis of five ecological traits (proportion of aeronauts, type of diet, overwintering stages, body size and maternal care), however, clearly showed differences in the spiders from the organic orchards. The spider species in the other commercial orchards were smaller and have higher dispersal abilities. Seven bioindicator species were identified in abandoned orchards, two species in organic ones (only Lycosidae) and one species in conventional orchards (Linyphiidae).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bahlai CA, Xue Y, Mc Creary CM, Schaafsma AW, Hallett RH (2010) Choosing organic pesticides over synthetic pesticides may not mitigate environmental risks in soybeans. PLoS One. doi:10.1371/journal.pone.0011250

    Google Scholar 

  • Bajwa WI, Aliniazee MT (2001) Spider fauna in apple ecosystem of western Oregon and its field susceptibility to chemical and microbial insecticides. J Econ Entomol 94:68–75

    Article  CAS  Google Scholar 

  • Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114

    Article  CAS  Google Scholar 

  • Bengtsson J, Ahnstrom J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269

    Article  Google Scholar 

  • Bonte D, Baert L, Lens L, Maelfait JP (2004) Effects of aerial dispersal, habitat specialisation and landscape structure on spider distribution across fragmented grey dunes. Ecography 27:343–349

    Article  Google Scholar 

  • Bonte D, Lens L, Maelfait JP (2006) Sand dynamics in coastal dune landscapes constrain diversity and life-history characteristics of spiders. J Appl Ecol 43:735–747

    Article  Google Scholar 

  • Cardenas M, Ruano F, Garcia P, Pascual F, Campos M (2006) Impact of agricultural management on spider populations in the canopy of olive tress. Biol Control 38:188–195

    Article  Google Scholar 

  • Chevenet F, Doledec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309

    Article  Google Scholar 

  • Codron JM, Habib R, Jacquet F, Sauphanor B (2003) Bilan et perspectives environnementales de la filière arboriculture fruitière. In: Dron D (ed) Agriculture, territoire, environnement dans les politiques européennes. Dossiers de l’Environnement de l’INRA 23, pp 31–67

  • Cristofoli S, Mahy G, Kekenbosh R, Lambeets K (2010) Spider communities as evaluation tools for wet heatland restoration. Ecol Indic 10:773–780

    Article  Google Scholar 

  • Croft BA (1982) Arthropod resistance to insecticides: a key to pest control failures and successes in North American apple orchards. Entomol Exp Appl 31:88–110

    Article  Google Scholar 

  • Crowder DW, Northfield TD, Strand MR, Snyder WE (2010) Organic agriculture promotes evenness and natural pest control. Nature 466:109–123

    Article  CAS  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Feber RE, Bell J, Johnston PJ, Firbank LG, Macdonald DW (1998) The effects of organic farming on surface-active spider (Aranea) assemblages in wheat in southern England, UK. J Arachnol 26:190–202

    Google Scholar 

  • Field JG, Clarke KR, Warwick RM (1982) A practical strategy for analysing multispecies distribution patterns. Mar Ecol Prog Ser 8:37–52

    Article  Google Scholar 

  • Foelix RF (2011) Biology of spiders. Oxford University Press, New York

    Google Scholar 

  • Glück E, Ingrisch S (1990) The effect of biodynamics and conventional agriculture management on Erigoninae and Lycosidae spiders. J Appl Entomol 110:136–148

    Article  Google Scholar 

  • Greenstone MH, Morgan CE, Hultsh A-L (1987) Ballooning spiders in Missouri, USA, and New South Wales, Australia: family and mass distributions. J Arachnol 15:163–170

    Google Scholar 

  • Halley JM, Thomas CFG, Jepson PC (1996) A model for the spatial dynamics of linyphiid spiders in farmland. J Appl Ecol 33:471–492

    Article  Google Scholar 

  • Hedde M, Pey B, Auclerc A, Capowiez Y, Cluzeau D, Cortet J et al (2012a) BETSI, a complete framework for studying soil invertebrate functional traits. XVI ICSZ—International Colloquium on Soil Zoology, Coimbra

    Google Scholar 

  • Hedde M, van Oort F, Lamy I (2012b) Functional traits of soil invertebrates as indicators for exposure to soil disturbance. Environ Pollut 164:59–65

    Article  CAS  Google Scholar 

  • Hedde M, van Oort F, Renouf E, Thénard J, Lamy I (2013) Dynamics of soil fauna after plantation of perennial energy crops on polluted soils. Appl Soil Ecol 66:29–39

    Article  Google Scholar 

  • Herrmann JD, Bailey D, Hofer G, Herzog F, Schmidt-Entling MH (2010) Spiders associated with meadow and tree canopies of orchards respond differently to habitat fragmentation. Landsc Ecol 25:1375–1384

    Article  Google Scholar 

  • Hole DG, Perkins AJ, Wilson JD, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130

    Article  Google Scholar 

  • Jørgensen LN (1999) Denmark’s action plans for pesticides: status and role of research. Nord Jordbrugsforsk 81:201–202

    Google Scholar 

  • Laliberté E, Shipley B (2011) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-11

  • Lambeets K, Hendrickx K, Vanacker S, Van Looy K, Maelfait JP, Bonte D (2008) Assemblage structure and conservation value of spiders and carabid beetles from restored lowland river banks. Biodivers Conserv 17:3133–3148

    Article  Google Scholar 

  • Lambeets K, Vandegehuchte ML, Maelfait JP, Bonte D (2009) Integrating environmental conditions and functional life-history traits for riparian arthropods conservation planning. Biol Conserv 142:625–637

    Article  Google Scholar 

  • Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10

    Article  Google Scholar 

  • Langlands PR, Brennan KEC, Frameneau VW, Main BY (2011) Predicting the post-fire responses of animal assemblages: testing a trait-based approach using spider. J Anim Ecol 80:558–568

    Article  Google Scholar 

  • Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quetier F, Thebault A, Bonis A (2008) Assessing functional diversity in the field—methodology matters! Funct Ecol 22:134–147

    Google Scholar 

  • Lemke A, Poehling H-M (2002) Sown weed strips in cereal fields: overwintering site and “source” habitat for Oedothorax apicatus (Blackwall) and Erigone atra (Blackwall) (Araneae: Erigonidae). Agric Ecosyst Environ 90:67–80

    Article  Google Scholar 

  • LePeru B (2006) Catalogue et repartition des Araignées de France. Rev Arachnol 16:1–468

    Google Scholar 

  • LeViol I, Julliard R, Kerbiriou C, Redon L, Carnino N, Machon N, Porcher E (2008) Plant and spider communities benefit differently from the presence of planted hedgerows in highway verges. Biol Conserv 141:1581–1590

    Article  Google Scholar 

  • Marc P, Canard A, Ysnel F (1999) Spiders (Araneae) useful for pest limitation and bioindication. Agric Ecosyst Environ 74:229–273

    Article  Google Scholar 

  • Marko V, Keresztes B, Fountain MT, Cross JV (2009) Prey availability, pesticides and the abundance of orchard spider communities. Biol Control 48:115–124

    Article  Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecol 82:290–297

    Article  Google Scholar 

  • Minarro M, Espadaler X, Melero VX, Suarez-Alvarez V (2009) Organic versus conventional management in an apple orchard: effects of fertilization and tree-row management on ground-dwelling predaceous arthropods. Agric For Entomol 11:133–142

    Article  Google Scholar 

  • Nentwig W (2003) Management of biodiversity in agroecosystems. Basic Appl Ecol 4:105–106

    Article  Google Scholar 

  • Nentwig W (2013) Ecophysiology of spiders. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Nyffeler M, Sunderland KD (2003) Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of european and US studies. Agric Ecosyst Environ 95:579–612

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package. R package version 1.17-7

  • Park YC, Joo JS, Kim JP (2007) Diversity of spider communities in a pesticide-treated pine (Pinus densiflora) forest. J Ecol Field Biol 30:179–186

    Article  Google Scholar 

  • Pekar S (2012) Spiders in the pesticide world: an ecotoxicological review. Pest Manag Sci 68:1438–1446

    Article  CAS  Google Scholar 

  • Pekar S, Koucourek F (2004) Spider (Araneae) in the biological and integrated pest management of apple in Czech Republic. J Appl Entomol 128:561–566

    Article  Google Scholar 

  • Pfiffner L, Luka H (2003) Effects of low-input farming systems on carabids and epigeal spiders—a paired farm approach. Basic Appl Ecol 4:117–127

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D and the R Development Core Team (2011) Nlme: linear and nonlinear mixed effects models. R package version 3.1-113

  • Platnick NI (2012) The world spider catalog, version 13.0. American Museum of Natural History. doi:10.5531/db.iz.0001

  • Prieto-Benitez S, Mendez M (2011) Effect of land management on the abundance and richness of spiders (Aranea): a meta-analysis. Biol Conserv 144:683–691

    Article  Google Scholar 

  • Ribera I, Doledec S, Downie IS, Foster GN (2001) Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82:1112–1129

    Article  Google Scholar 

  • Roberts MJ (1996) Spiders of Britain and Northern Europe. Harper Collins, London

    Google Scholar 

  • Santos SAP, Pereira JA, Torres LM, Nogueira AJA (2007) Evaluation of the effects on canopy arthropods of two agricultural management systems to control pests in olive groves from the north-east of Portugal. Chemosphere 67:131–139

    Article  CAS  Google Scholar 

  • Sauphanor B, Dirwimmer C, Boutin S, Chaussabel AL, Dupont N, Fauriel J, Gallia V, Lambert N, Navarro E, Parisi L, Plenet D, Ricaud V, Sagnes JL, Sauvaitre D, Simon S, Speich P, Zavagli F (2009) Analyse comparative de différents systèmes en arboriculture fruitière. In: INRA (Ed), Ecophyto R&D: vers des systèmes de culture économes en produits phytosanitaires. Rapport d’expertise, Tome IV, INRA, Paris

  • Sauphanor B, Severac G, Maugin S, Toubon J-F, Capowiez Y (2012) Exclusion netting may alter reproduction of the codling moth (Cydia pomonella) and prevent associated fruit damage to apple orchards. Entomol Exp Appl 145:134–142

    Article  Google Scholar 

  • Schmidt MH, Thies C, Nentwig W, Tscharntke T (2008) Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 35:155–166

    Google Scholar 

  • Topping CJ, Sunderland KD (1994) A spatial population-dynamics model for Leptyphantes-tenuis (Araneae, Linyphiidae) with some simulations of the spatial and temporal effects of farming opérations and land-use. Agric Ecosyst Environ 48:203–217

    Article  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional. Oikos 116:882–892

    Article  Google Scholar 

  • Wilson EO (1975) The adequacy of body size as a niche différence. Am Nat 109:769–784

    Article  Google Scholar 

  • Wise D (1995) Spiders in ecological webs. Cambridge University Press, Cambridge

    Google Scholar 

  • Wisniewska J, Prokopy RJ (1997) Pesticide effect on faunal composition, abundance, and body length of spiders (Araneae) in apple orchards. Environ Entomol 26:763–776

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors warmly thanked the producers and owners for allowing them to sample spiders in their orchards. This study is dedicated to the memory of P. R., one of the producers, who committed suicide in 2012. The authors also wish to thank our colleagues participating in the BETSI project (funded by the French Foundation for Biodiversity) for valuable discussions on trait-based approaches.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Capowiez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzia, C., Pasquet, A., Caro, G. et al. The impact of management strategies in apple orchards on the structural and functional diversity of epigeal spiders. Ecotoxicology 24, 616–625 (2015). https://doi.org/10.1007/s10646-014-1409-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1409-1

Keywords

Navigation