Skip to main content
Log in

Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms

  • Review
  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Initiatives to support the sustainable development of the nanotechnology sector have led to rapid growth in research on the environmental fate, hazards and risk of engineered nanoparticles (ENP). As the field has matured over the last 10 years, a detailed picture of the best methods to track potential forms of exposure, their uptake routes and best methods to identify and track internal fate and distributions following assimilation into organisms has begun to emerge. Here we summarise the current state of the field, focussing particularly on metal and metal oxide ENPs. Studies to date have shown that ENPs undergo a range of physical and chemical transformations in the environment to the extent that exposures to pristine well dispersed materials will occur only rarely in nature. Methods to track assimilation and internal distributions must, therefore, be capable of detecting these modified forms. The uptake mechanisms involved in ENP assimilation may include a range of trans-cellular trafficking and distribution pathways, which can be followed by passage to intracellular compartments. To trace toxicokinetics and distributions, analytical and imaging approaches are available to determine rates, states and forms. When used hierarchically, these tools can map ENP distributions to specific target organs, cell types and organelles, such as endosomes, caveolae and lysosomes and assess speciation states. The first decade of ENP ecotoxicology research, thus, points to an emerging paradigm where exposure is to transformed materials transported into tissues and cells via passive and active pathways within which they can be assimilated and therein identified using a tiered analytical and imaging approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apte SC, Rogers NJ, Batley GE (2009) Ecotoxicology of Manufactured Nanoparticles. In: Lead JR, Smith EL (eds) Environmental and Human Health Impacts of Nanotechnology, vol 1. Blackwell Publishing Ltd, Chichester, pp 267–306

  • Audinot J-N, Georgantzopoulou A, Piret J-P, Gutleb AC, Dowsett D, Migeon HN, Hoffmann L (2013) Identification and localization of nanoparticles in tissues by mass spectrometry. Surf Interface Anal 45:230–233

    CAS  Google Scholar 

  • Baalousha M et al (2012) Characterization of cerium oxide nanoparticles-Part 2: nonsize measurements. Environ Toxicol Chem 31:994–1003

    CAS  Google Scholar 

  • Bacchetta R et al (2012) Nano-sized CuO, TiO2 and ZnO affect Xenopus laevis development. Nanotoxicology 6:381–398

    CAS  Google Scholar 

  • Bae E, Park H-J, Yoon J, Kim Y, Choi K, Yi J (2011) Bacterial uptake of silver nanoparticles in the presence of humic acid and AgNO3. Kor J Chem Eng 28:267–271

    CAS  Google Scholar 

  • Bandyopadhyay S, Peralta-Videa JR, Gardea-Torresdey JL (2013) Advanced analytical techniques for the measurement of nanomaterials in food and agricultural samples: a review. Environ Eng Sci 30:118–125

    CAS  Google Scholar 

  • Barton LE et al (2014) Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor. Environ Sci Technol 48:7289–7296

    CAS  Google Scholar 

  • Battin TJ, Kammer FVD, Weilhartner A, Ottofuelling S, Hofmann T (2009) Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43:8098–8104

    CAS  Google Scholar 

  • Becker JS, Matusch A, Depboylu C, Dobrowolska J, Zoriy MV (2007) Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (Slugs-Genus arion) measured by laser ablation inductively coupled of plasma mass spectrometry. Anal Chem 79:6074–6080

    CAS  Google Scholar 

  • Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C, Becker JS (2010) Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spec Rev 29:156–175

    CAS  Google Scholar 

  • Becker C, Brandis D, Storch V (2011) Morphology of the female reproductive system of European pea crabs (Crustacea, Decapoda, Brachyura, Pinnotheridae). J Morphol 272:12–26

    Google Scholar 

  • Bone AJ et al (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2-toxicity and Ag speciation. Envion Sci Technol 46:6925–6933

    CAS  Google Scholar 

  • Buffet P-E, Amiard-Triquet C, Dybowska A, Risso-de Faverney C, Guibbolini M, Valsami-Jones E, Mouneyrac C (2012) Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. Ecotox Environ Saf 84:191–198

    CAS  Google Scholar 

  • Bussy C et al (2013) Intracellular fate of carbon nanotubes inside murine macrophages: pH-dependent detachment of iron catalyst nanoparticles. Part Fibre Toxicol 10:24–24

    CAS  Google Scholar 

  • Canesi L, Ciacci C, Vallotto D, Gallo G, Marcomini A, Pojana G (2010) In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat Toxicol 96:151–158

    CAS  Google Scholar 

  • Chen LZ, Zhou LN, Liu YD, Deng SQ, Wu H, Wang GH (2012a) Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 84:155–162

    CAS  Google Scholar 

  • Chen P-J, Tan S-W, Wu W-L (2012b) Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish. Envion Sci Technol 46:8431–8439

    CAS  Google Scholar 

  • Cheng C, Porter AE, Muller K, Koziol K, Skepper JN, Midgley P, Welland M (2009) Imaging carbon nanoparticles and related cytotoxicity. In: Kenny L (ed) Inhaled Particles X, vol 151. Journal of Physics Conference Series. Iop Publishing Ltd, Bristol

  • Cherchi C, Chernenko T, Diem M, Gu AZ (2011) Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environ Toxicol Chem 30:861–869

    CAS  Google Scholar 

  • Clement L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere 90:1083–1090

    CAS  Google Scholar 

  • Clift MJD et al (2008) The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol 232:418–427

    CAS  Google Scholar 

  • Coleman JG et al (2013) Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using Lumbriculus variegatus. Environ Toxicol Chem 32:2069–2077

    CAS  Google Scholar 

  • Collins RN, Bakkaus E, Carriere M, Khodja H, Proux O, Morel J-L, Gouget B (2010) Uptake, localization, and speciation of cobalt in Triticum aestivum L. (Wheat) and Lycopersicon esculentum M. (Tomato). Envion Sci Technol 44:2904–2910

    CAS  Google Scholar 

  • CotterHowells J, Charnock JM, Winters C, Kille P, Fry JC, Morgan AJ (2005) Metal compartmentation and speciation in a soil sentinel: the earthworm, Dendrodrilus rubidus. Envion Sci Technol 39:7731–7740

    CAS  Google Scholar 

  • Coutris C, Hertel-Aas T, Lapied E, Joner EJ, Oughton DH (2012) Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 6:186–195

    CAS  Google Scholar 

  • Cox G, Sheppard CJR (2004) Practical limits of resolution in confocal and non-linear microscopy. Microsc Res Tech 63:18–22

    Google Scholar 

  • Dale AL, Lowry GV, Casman EA (2013) Modeling nanosilver transformations in freshwater sediments. Envion, Sci Technol 47

    Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396

    Google Scholar 

  • Ding HM, Ma YQ (2012) Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials 33:5798–5802

    CAS  Google Scholar 

  • Donfack P, Rehders M, Brix K, Boukamp P, Materny A (2010) Micro Raman spectroscopy for monitoring alterations between human skin keratinocytes HaCaT and their tumorigenic derivatives A5RT3-toward a Raman characterization of a skin carcinoma model. J Raman Spectrosc 41:16–26

    CAS  Google Scholar 

  • Donner E, Punshon T, Guerinot ML, Lombi E (2012) Functional characterisation of metal(loid) processes in planta through the integration of synchrotron techniques and plant molecular biology. Anal Bioanal Chem 402:3287–3298

    CAS  Google Scholar 

  • Dorney J, Bonnier F, Garcia A, Casey A, Chambers G, Byrne HJ (2012) Identifying and localizing intracellular nanoparticles using Raman spectroscopy. Analyst 137:1111–1119

    CAS  Google Scholar 

  • dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA (2011) Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLOS One 6

  • Dudkiewicz A et al (2011) Characterization of nanomaterials in food by electron microscopy. Trends Anal Chem 30:28–43

    CAS  Google Scholar 

  • Duran N, Marcato PD, De Souza GIH, Laves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    CAS  Google Scholar 

  • Durrant SF, Ward NI (2005) Recent biological and environmental applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J Anal Atom Spectrom 20:821–829

    CAS  Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Google Scholar 

  • Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009a) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Envion Sci Technol 43:7285–7290

    CAS  Google Scholar 

  • Fabrega J, Renshaw JC, Lead JR (2009b) Interactions of silver nanoparticles with Pseudomonas putida biofilms. Environ Sci Technol 43:9004–9009

    CAS  Google Scholar 

  • Farkas J, Christian P, Gallego-Urrea JA, Roos N, Hassellov M, Tollefsen KE, Thomas KV (2011a) Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat Toxicol 101:117–125

    CAS  Google Scholar 

  • Farkas J et al (2011b) Characterization of the effluent from a nanosilver producing washing machine. Environ Int 37:1057–1062

    CAS  Google Scholar 

  • Fent K (2007) Ökotoxikology, vol 3. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Feswick A, Griffitt RJ, Siebein K, Barber DS (2013) Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functibnalization. Aquat Toxicol 130:210–218

    Google Scholar 

  • Gaiser BK et al (2012) Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31:144–154

    CAS  Google Scholar 

  • Galletta BJ, Cooper JA (2009) Actin and endocytosis: mechanisms and phylogeny. Curr Opin Cell Biol 21:20–27

    CAS  Google Scholar 

  • Galloway T, Lewis C, Dolciotti I, Johnston BD, Moger J, Regoli F (2010) Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environ Pollut 158:1748–1755

    CAS  Google Scholar 

  • Gao Y et al (2008) Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. J Anal Atom Spectrom 23:1121–1124

    CAS  Google Scholar 

  • Garcia-Aonso J et al (2011) Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. Envion Sci Technol 45:4630–4636

    Google Scholar 

  • Geiser M et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    Google Scholar 

  • Georgantzopoulou A et al (2013) Ag nanoparticles: size- and surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS. Nanotoxicology 7:1168–1178

    CAS  Google Scholar 

  • Gibbs-Flournoy EA, Bromberg PA, Hofer TPJ, Samet JM, Zucker RM (2011) Darkfield-confocal microscopy detection of nanoscale particle internalization by human lung cells. Part Fibre Toxicol 8(1):2

  • Golobič M, Jemec A, Drobne D, Romih T, Kasemets K, Kahru A (2012) Upon exposure to Cu nanoparticles, Accumulation of copper in the isopod Porcellio scaber. Is due to the dissolved Cu ions inside the digestive tract. Environ Sci Technol 46:12112–12119

    Google Scholar 

  • Goodwin RJA (2012) Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J Proteomics 75:4893–4911

    CAS  Google Scholar 

  • Gorth DJ, Rand DM, Webster TJ (2011) Silver nanoparticle toxicity in Drosophila: size does matter International. J Nanomed 6:343–350

    CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Envion Sci Technol 43:9216–9222

    CAS  Google Scholar 

  • Gottschalk F, Kost E, Nowack B (2013) Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ Toxicol Chem 32:1278–1287

    CAS  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    CAS  Google Scholar 

  • Hagenhoff B et al (2013) Detection of micro- and nano-particles in animal cells by ToF-SIMS 3D analysis. Surf Interface Anal 45:315–319

    CAS  Google Scholar 

  • Handy R, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    CAS  Google Scholar 

  • Handy R et al (2012a) Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 21:1–40

    Google Scholar 

  • Handy RD et al (2012b) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31

    CAS  Google Scholar 

  • Handy RD et al (2012c) Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 21:933–972

    CAS  Google Scholar 

  • Hardas SS et al (2010) Brain distribution and toxicological evaluation of a systemically delivered engineered nanoscale Ceria. Toxicol Sci 116:562–576

    CAS  Google Scholar 

  • Harutyunyan H, Palomba S, Renger J, Quidant R, Novotny L (2010) Nonlinear dark-field microscopy. Nano Lett 10:5076–5079

    CAS  Google Scholar 

  • He X, Ma Y, Li M, Zhang P, Li Y, Zhang Z (2013) Quantifying and imaging engineered nanomaterials in vivo: challenges and techniques. Small 9:1482–1491

    CAS  Google Scholar 

  • Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier HC (2011) Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Wat Res 45:179–190

    CAS  Google Scholar 

  • Hooper HL, Jurkschat K, Bailey J, Morgan AJ, Lawlor AJ, Spurgeon D, Svendsen C (2011) Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environ Int 37(6):1111–1117

  • Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Pollution Monitoring Series. Elsevier Applied Science, London, UK

    Google Scholar 

  • Hutter E, Boridy S, Labrecque S, Lalancette-Hebert M, Kriz J, Winnik FM, Maysinger D (2010) Microglial response to gold nanoparticles. ACS Nano 4:2595–2606

    CAS  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang B-I, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    CAS  Google Scholar 

  • Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN (2009) Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol 43:6349–6356

    CAS  Google Scholar 

  • Iversen T-G, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6:176–185

    CAS  Google Scholar 

  • Jarvie HP et al (2009) Fate of silica nanoparticles in simulated primary wastewater treatment. Envion Sci Technol 43:8622–8628

    CAS  Google Scholar 

  • Johnson AC et al (2011) An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Sci Total Environ 409:2503–2510

    CAS  Google Scholar 

  • Johnston BD et al (2010) Bioavailability of nanoscale metal oxides TiO, CeO2, and ZnO to Fish. Envion Sci Technol 44:1144–1151

    CAS  Google Scholar 

  • Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45:776–781

    CAS  Google Scholar 

  • Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Envion Sci Technol 46:8467–8474

    CAS  Google Scholar 

  • Kaletas BK et al (2009) Sample preparation issues for tissue imaging by imaging MS. Proteomics 9:2622–2633

    CAS  Google Scholar 

  • Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS (2012) Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125:462–472

    CAS  Google Scholar 

  • Kent RD, Oser JG, Vikesland PJ (2014) Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant. Environ Sci Technol 48:8564–8572

    CAS  Google Scholar 

  • Khan FR et al (2012) Bioaccumulation dynamics and modeling in an estuarine invertebrate following aqueous Eeposure to nanosized and dissolved silver. Environ Sci Technol 46:7621–7628

    CAS  Google Scholar 

  • Khan FR et al (2013) Stable isotope tracer to determine uptake and efflux dynamics of ZnO nano- and bulk particles and dissolved Zn to an estuarine snail. Envion Sci Technol 47:8532–8539

    CAS  Google Scholar 

  • Kim B, Park C-S, Murayama M, Hochella MF Jr (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Envion Sci Technol 44:7509–7514

    CAS  Google Scholar 

  • Kim SW, Nam SH, An YJ (2012) Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicol Environ Saf 77:64–70

    CAS  Google Scholar 

  • Klaine SJ et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    CAS  Google Scholar 

  • Koelmel J, Leland T, Wang HH, Amarasiriwardena D, Xing BS (2013) Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut 174:222–228

    CAS  Google Scholar 

  • Lai K, Wang B, Zhang Y, Zheng Y (2013) Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress. Phys Chem Chem Phys 15:270–278

    CAS  Google Scholar 

  • Larner F et al (2012) Tracing bioavailability of ZnO nanoparticles using stable isotope labeling. Envion Sci Technol 46:12137–12145

    CAS  Google Scholar 

  • Larue C et al (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    CAS  Google Scholar 

  • Lead JR, Smith E (2009) Environmental and human health impacts of nanotechnology, vol Chichester. Wiley, UK

    Google Scholar 

  • Leclerc S, Wilkinson KJ (2013) Bioaccumulation of nanosilver by Chlamydomonas reinhardti—Nanoparticle or the Free Ion? Envion Sci Technol 48(1):358–364

  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu X-HN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–143

    CAS  Google Scholar 

  • Levard C et al (2013) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Envion Sci Technol 47:13440–13448

    CAS  Google Scholar 

  • Li M, Czymmek KJ, Huang CP (2011) Responses of Ceriodaphnia dubia to TiO2 and Al2O3 nanoparticles: a dynamic nano-toxicity assessment of energy budget distribution. J Hazard Mater 187:502–508

    CAS  Google Scholar 

  • Lobinski R, Moulin C, Ortega R (2006) Imaging and speciation of trace elements in biological environment. Biochimie 88:1591–1604

    CAS  Google Scholar 

  • Lombi E, Donner E, Tavakkoli E, Turney TW, Naidu R, Miller BW, Scheckel KG (2012) Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Envion Sci Technol 46:9089–9096

    CAS  Google Scholar 

  • Ma R, Levard C, Michel FM, Brown GE, Lowry GV (2013) Sulfidation mechanism for Zinc Oxide nanoparticles and the effect of sulfidation on their solubility. Envion Sci Technol 47:2527–2534

    CAS  Google Scholar 

  • Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85:3036–3049

    CAS  Google Scholar 

  • McCarthy J, Gong X, Nahirney D, Duszyk M, Radomski MW (2011) Polystyrene nanoparticles activate ion transport in human airway epithelial cells. Int J Nanomed 6:1343–1356

    CAS  Google Scholar 

  • McGeer JC, Wood CM (1998) Protective effects of water Cl- on physiological responses to waterborne silver in rainbow trout. Can J Fish Aquat Sci 55:2447–2454

    CAS  Google Scholar 

  • McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ (2009) In situ imaging of metals in cells and tissues. Chem Rev 109:4780–4827

    CAS  Google Scholar 

  • Meyer JN et al (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100:140–150

    CAS  Google Scholar 

  • Misra SK, Dybowska A, Berhanu D, Croteau MN, Luoma SN, Boccaccini AR, Valsami-Jones E (2012) Isotopically modified nanoparticles for enhanced detection in bioaccumulation studies. Envion Sci Technol 46:1216–1222

    CAS  Google Scholar 

  • Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF (2012) Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ Toxicol Chem 31:115–121

    CAS  Google Scholar 

  • Moger J, Johnston BD, Tyler CR (2008) Imaging metal oxide nanoparticles in biological structures with CARS microscopy. Opt Express 16:3408–3419

    CAS  Google Scholar 

  • Mohan N, Chen C-S, Hsieh H-H, Wu Y-C, Chang H-C (2010) In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in Caenorhabditis elegans. Nano Lett 10:3692–3699

    CAS  Google Scholar 

  • Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    CAS  Google Scholar 

  • Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE (2011) Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci 123:264–280

    CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    CAS  Google Scholar 

  • Moore KL et al (2010) NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytol 185:434–445

    CAS  Google Scholar 

  • Moore KL, Lombi E, Zhao FJ, Grovenor CRM (2012) Elemental imaging at the nanoscale: nanoSIMS and complementary techniques for element localisation in plants. Anal Bioanal Chem 402:3263–3273

    CAS  Google Scholar 

  • Morel FMM, Hering JG (1983) Principles of aquatic chemistry. Wiley, New York

    Google Scholar 

  • Morgan AJ (1985) Microscopy handbooks. X-ray microanalysis in electron microscopy for biologists. In: Morgan AJ (ed) Microscopy Handbooks. Microscopy Handbooks. Oxford University Press, Oxford, pp VIII+79P

  • Morgan AJ, Sturzenbaum SR, Winters C, Kille P (1999) Cellular and molecular aspects of metal sequestration and toxicity in earthworms. Invert Reprod Dev 36:17–24

    CAS  Google Scholar 

  • Morgan AJ, Kille P, Bennett A, O’Reilly M, Fisher P, Charnock JM (2013) Pb and Zn imaging and in situ speciation at the geogenic/biogenic interface in sentinel earthworms using electron microprobe and synchrotron micro-focus X-ray spectroscopy. Environ Pollut 173:68–74

    CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    CAS  Google Scholar 

  • Mu QS, Hondow NS, Krzeminski L, Brown AP, Jeuken LJC, Routledge MN (2012) Mechanism of cellular uptake of genotoxic silica nanoparticles. Part Fibre Toxicol 9:29

    CAS  Google Scholar 

  • Muller KH et al (2010) pH-Dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS Nano 4:6767–6779

    CAS  Google Scholar 

  • Nallathamby PD, Lee KJ, Xu X-HN (2008) Design of stable and uniform single nanoparticle photonics for in vivo dynamics imaging of nanoenvironments of zebrafish embryonic fluids. ACS Nano 2:1371–1380

    CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    CAS  Google Scholar 

  • Nel AE et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    CAS  Google Scholar 

  • Novak S et al (2012) Cell membrane integrity and internalization of ingested TiO2 nanoparticles by digestive gland cells of a terrestrial isopod. Environ Toxicol Chem 31:1083–1090

    CAS  Google Scholar 

  • Novak S et al (2013) Cellular internalization of dissolved cobalt ions from ingested CoFe2O4 nanoparticles: in vivo experimental evidence. Envion Sci Technol 47:5400–5408

    CAS  Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058–1062

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Hlth Perspect 113:823–839

    CAS  Google Scholar 

  • Ormategui N, Zhang S, Loinaz I, Brydson R, Nelson A, Vakurov A (2012) Interaction of poly(N-isopropylacrylamide) (pNIPAM) based nanoparticles and their linear polymer precursor with phospholipid membrane models. Bioelectrochemistry 87:211–219

    CAS  Google Scholar 

  • Ortega R, Deves G, Carmona A (2009) Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy. J R Soc Interface 6:S649–S658

    CAS  Google Scholar 

  • Osborne OJ, Johnston BD, Moger J, Balousha M, Lead JR, Kudoh T, Tyler CR (2013) Effects of particle size and coating on nanoscale Ag and TiO2 exposure in zebrafish (Danio rerio) embryos. Nanotoxicology 7:1315–1324

    CAS  Google Scholar 

  • Ottofuelling S, Von Der Kammer F, Hofmann T (2011) Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior. Envion Sci Technol 45:10045–10052

    CAS  Google Scholar 

  • Pan B, Xing BS (2012) Applications and implications of manufactured nanoparticles in soils: a review. Eur J Soil Sci 63:437–456

    CAS  Google Scholar 

  • Patel L, Zaro J, Shen W-C (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharma Res 24:1977–1992

    CAS  Google Scholar 

  • Pluskota A, Horzowski E, Bossinger O, von Mikecz A (2009) In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence. PLoS One 4:e6622

    Google Scholar 

  • Polak N, Read DS, Jurkschat K, Kelly FJ, Spurgeon DJ, Stürzenbaum SR (2014) Metallochelators confer protection against ZnO nanoparticle induced toxicity in Caenorhabditis elegans. Comp Biochem Physiol Ser C 160:75–85

  • Puzyn T et al (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–178

    CAS  Google Scholar 

  • Qin Z, Caruso JA, Lai B, Matusch A, Becker JS (2011) Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 3:28–37

    CAS  Google Scholar 

  • Qu Y et al (2011) Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett 11:3174–3183

    CAS  Google Scholar 

  • Rallo R et al (2011) Self-organizing map analysis of toxicity-related cell signaling pathways for metal and metal oxide nanoparticles. Envion Sci Technol 45:1695–1702

    CAS  Google Scholar 

  • Reed RB, Higgins CP, Westerhoff P, Tadjiki S, Ranville JF (2012) Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 27:1093–1100

    CAS  Google Scholar 

  • Reinsch BC et al (2012) Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol 46:6992–7000

    CAS  Google Scholar 

  • Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Envion Sci Technol 43:3933–3940

    CAS  Google Scholar 

  • Rosenkranz P, Chaudhry Q, Stone V, Fernandes TF (2009) A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environ Toxicol Chem 28:2142–2149

    CAS  Google Scholar 

  • Royal Commission on Environmental Pollution (2008) Novel Materials in the Environment: The case of Nanotechnology. Office of Public Sector Information, UK

    Google Scholar 

  • Sabo-Attwood T et al (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6:353–360

    CAS  Google Scholar 

  • Sakar B (1999) Metals and genetics. Kluwer Academic, New York

    Google Scholar 

  • Sandin P, Fitzpatrick LW, Simpson JC, Dawson KA (2012) High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells. ACS Nano 6:1513–1521

    CAS  Google Scholar 

  • Santos MC, Wagner M, Wu B, Scheider J, Oehlmann J, Cadore S, Becker JS (2009) Biomonitoring of metal contamination in a marine prosobranch snail (Nassarius reticulatus) by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 80:428–433

    CAS  Google Scholar 

  • Schie IW, Huser T (2013) Methods and applications of Raman microspectroscopy to single-cell analysis. Appl Spectrosc 67:813–828

    CAS  Google Scholar 

  • Schultz AG, Ong KJ, MacCormack T, Ma G, Veinot JGC, Goss GG (2012) Silver nanoparticles inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 46:10295–10301

    CAS  Google Scholar 

  • Scown TM et al (2010) Assessment of cultured fish hepatocytes for studying cellular uptake and (eco)toxicity of nanoparticles. Environ Chem 7:36–49

    CAS  Google Scholar 

  • Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643

    CAS  Google Scholar 

  • Shapero K, Fenaroli F, Lynch I, Cottell DC, Salvati A, Dawson KA (2011) Time and space resolved uptake study of silica nanoparticles by human cells. Mol Biosyst 7:371–378

    CAS  Google Scholar 

  • Smolders E, Oorts K, vanSprang P, Schoeters I, Janssen CR, McGrath SP, McLaughlin MJ (2009) Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environ Toxicol Chem 28:1633–1642

    CAS  Google Scholar 

  • Stebounova LV, Adamcakova-Dodd A, Kim JS, Park H, O’Shaughnessy PT, Grassian VH, Thorne PS (2011) Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 8:5

    CAS  Google Scholar 

  • Stewart DTR, Noguera-Oviedo K, Lee V, Banerjee S, Watson DF, Aga DS (2013) Quantum dots exhibit less bioaccumulation than free cadmium and selenium in the earthworm Eisenia andrei. Environ Toxicol Chem 32:1288–1294

    CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    CAS  Google Scholar 

  • Stone V, Clift MJD, Johnston H (2009) Human Toxicology and Effects of Nanoparticles. In: Lead JR, Smith EL (eds) Environmental and human health impacts of nanotechnology, vol 1. Blackwell Publishing Ltd, pp 357–388

  • Stürzenbaum SR, Georgiev O, Morgan AJ, Kille P (2004) Cadmium detoxification in earthworms: from genes to cells. Envion Sci Technol 38:6283–6289

    Google Scholar 

  • Tantra R, Knight A (2010) Cellular uptake and intracellular fate of engineered nanoparticles: a review on the application of imaging techniques. Nanotoxicology 5:381–392

    Google Scholar 

  • Tentschert J et al (2013) TOF-SIMS analysis of cell membrane changes in functional impaired human macrophages upon nanosilver treatment. Surf Interface Anal 45:483–485

    CAS  Google Scholar 

  • Tian S, Lu L, Yang X, Webb SM, Du Y, Brown PH (2010) Spatial imaging and speciation of lead in the accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation. Envion Sci Technol 44:5920–5926

    CAS  Google Scholar 

  • Tkalec ZP et al (2011) Micro-PIXE study of Ag in digestive glands of a nano-Ag fed arthropod (Porcellio scaber, Isopoda, Crustacea). Nucl Instr Methods Phys Res B 269:2286–2291

    CAS  Google Scholar 

  • Treuel L, Jiang X, Nienhaus GU (2013) New views on cellular uptake and trafficking of manufactured nanoparticles. Journal of The Royal Society Interface 10(82): 20120939

  • Tsyusko OV et al (2012) Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles. Envion Sci Technol 46:4115–4124

    CAS  Google Scholar 

  • Unrine JM, Hunyadi SE, Tsyusko OV, Rao W, Shoults-Wilson WA, Bertsch PM (2010a) Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Envion Sci Technol 44:8308–8313

    CAS  Google Scholar 

  • Unrine JM, Tsyusko OV, Hunyadi SE, Judy JD, Bertsch PM (2010b) Effects of particle size on chemical speciation and bioavailability of Cu to earthworms (Eisenia fetida) exposed to Cu nanoparticles. J Environ, Qual 39

    Google Scholar 

  • Unrine JM, Colman BP, Bone AJ, Gondikas AP, Matson CW (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution. Envion Sci Technol 46:6915–6924

    CAS  Google Scholar 

  • Vakurov A, Brydson R, Nelsont A (2012) Electrochemical modeling of the silica nanoparticle-biomembrane interaction. Langmuir 28:1246–1255

    CAS  Google Scholar 

  • Vakurov A, Mokry G, Drummond-Brydson R, Wallace R, Svendsen C, Nelson A (2013) ZnO nanoparticle interactions with phospholipid monolayers. J Colloid Interface Sci 404:161–168

    CAS  Google Scholar 

  • Valant J, Drobne D, Novak S (2012) Effect of ingested titanium dioxide nanoparticles on the digestive gland cell membrane of terrestrial isopods. Chemosphere 87:19–25

    CAS  Google Scholar 

  • van Aerle R et al (2013) Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47:8005–8014

    Google Scholar 

  • van der Zande M et al (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6:7427–7442

    Google Scholar 

  • von der Kammer F et al (2012) Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31:32–49

    Google Scholar 

  • Wang TH, Jian CH, Hsieh YK, Wang FN, Wang CF (2013) Spatial distributions of inorganic elements in honeybees (Apis mellifera L.) and possible elationships to dietary habits and surrounding environmental pollutants. J Agric Food Chem 61:5009–5015

    CAS  Google Scholar 

  • Weinkauf H, Brehm-Stecher BF (2009) Enhanced dark field microscopy for rapid artifact-free detection of nanoparticle binding to Candida albicans cells and hyphae. Biotechnol J 4:871–879

    CAS  Google Scholar 

  • Wepasnick KA, Smith BA, Bitter JL, Fairbrother DH (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396:1003–1014

    CAS  Google Scholar 

  • Wu B, Becker JS (2012) Imaging techniques for elements and element species in plant science. Metallomics 4:403–416

    CAS  Google Scholar 

  • Xin HL, Pach EA, Diaz RE, Stach EA, Salmeron M, Zheng HM (2012) Revealing correlation of valence state with nanoporous structure in cobalt catalyst nanoparticles by in situ environmental TEM. ACS Nano 6:4241–4247

    CAS  Google Scholar 

  • Zhao J, Wang Z, Dai Y, Xing B (2013) Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Res 47:4169–4178

    CAS  Google Scholar 

  • Zoriy MV, Becker JS (2009) Near-field laser ablation inductively coupled plasma mass spectrometry: a novel elemental analytical technique at the nanometer scale. Rapid Commun Mass Spectrom 23:23–30

    CAS  Google Scholar 

  • Zupanc J et al (2012) Experimental evidence for the interaction of C-60 fullerene with lipid vesicle membranes. Carbon 50:1170–1178

    CAS  Google Scholar 

Download references

Acknowledgments

C. Schultz is support by the EU 7th framework programme, Marie Curie Actions, Network for Initial Training NanoTOES (PITN-GA-2010-264506). Remaining contributors were supported by the NanoFATE, Collaborative Project CP-FP 247739 (2010–2014) under the EU 7th Framework Programme (FP7-NMP-ENV-2009, Theme 4). DJS, CS and DR received core funding from NERC. We thank the following for technical support: Drs J. Moger, N. Garrett, R. Goodhead of the Multiphoton Spectroscopy and Imaging Laboratory, University of Exeter (CARS); P. Fisher, Cardiff University (SEM-EDX); Dr A. Hayes, Cardiff University (Laser Confocal). The synchrotron imaging and speciation conducted at the Diamond Light Source Ltd., UK, was supported by Prof. F. Mosselmans and funded by Awards SP7837-1 and SP7837-2.

Conflict of interest

The authors confirm that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Spurgeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schultz, C., Powell, K., Crossley, A. et al. Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. Ecotoxicology 24, 239–261 (2015). https://doi.org/10.1007/s10646-014-1387-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1387-3

Keywords

Navigation