Skip to main content

Advertisement

Log in

Vertical distribution of bacterial communities in high arsenic sediments of Hetao Plain, Inner Mongolia

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Vertical distribution of bacterial communities was detected in high arsenic (As) sediments in a representative high As area in Inner Mongolia. Nineteen sediment samples were collected from a 30 m borehole and detected by geochemistry and molecular ecological approaches including polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), 16S rRNA gene clone library and 454 pyrosequencing. As contents ranged from 42.1 to 111.3 mg kg−1 which fluctuated with different depth and significantly high in clay and mild clay sediment samples at depth of 8, 20, 25 and 28 m respectively. The ratios of As(III) to total As generally increased with depth but As(V) dominated in all sediment samples. High concentrations of total As, sulfur, iron and total organic carbon were generally found in clay and low in sand samples. Both DGGE patterns and 454 pyrosequencing results indicated that bacterial communities dynamically diversified with increasing depth and were dominated by Firmicutes, Bacteroidetes, Proteobacteria and Chloroflexi. Most of the sediment samples were dominated by populations including Sporosarcina, Acinetobacter, Pseudomonas, Halomonas, Polaromonas, Paenibacillus and Flavobacterium. These populations were found with high similarities with those microbes capable of denitrification, sulfur oxidation, organic matter degradation and As resistance and reduction. These results implied that microbes might play an important role in As mobilization in the shallow aquifers of Hetao Plain, Inner Mongolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achal V, Pan X, Fu Q, Zhang D (2012) Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201:178–184

    Article  Google Scholar 

  • Achour AR, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158:128–137

    Article  CAS  Google Scholar 

  • Anawar HM, Akai J, Mihaljevič M, Sikder AM, Ahmed G, Tareq SM, Rahman MM (2011) Arsenic contamination in groundwater of Bangladesh: perspectives on geochemical, microbial and anthropogenic issues. Water 3:1050–1076

    Article  CAS  Google Scholar 

  • Barringer JL, Mumford A, Young LY, Reilly PA, Bonin JL, Rosman R (2010) Pathways for arsenic from sediments to groundwater to streams: biogeochemical processes in the Inner Coastal Plain, New Jersey, USA. Water Res 44:5532–5544

    Article  CAS  Google Scholar 

  • Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35:647–654

    Article  CAS  Google Scholar 

  • Chauhan VS, Nickson R, Chauhan D, Iyengar L, Sankararamakrishnan N (2009) Ground water geochemistry of Ballia district, Uttar Pradesh, India and mechanism of arsenic release. Chemosphere 75:83–91

    Article  CAS  Google Scholar 

  • Deng Y (2008) Geochemical processes of high arsenic groundwater system at western Hetao Basin. PhD Thesis. China University of Geosciences, Wuhan

  • Deng Y, Wang Y, Ma T (2009a) Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia. Appl Geochem 24:587–599

    Article  CAS  Google Scholar 

  • Deng Y, Wang Y, Ma T, Gan Y (2009b) Speciation and enrichment of arsenic in strongly reducing shallow aquifers at western Hetao Plain, northern China. Environ Geol 56:1467–1477

    Article  CAS  Google Scholar 

  • Ferreccio C, Sancha AM (2011) Arsenic exposure and its impact on health in Chile. J Health Popul Nutr 24:164–175

    Google Scholar 

  • Fisher JC, Wallschläger D, Planer-Friedrich B, Hollibaugh JT (2007) A new role for sulfur in arsenic cycling. Environ Sci Technol 42:81–85

    Article  Google Scholar 

  • Guo H, Yang S, Tang X, Li Y, Shen Z (2008) Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Sci Total Environ 393:131–144

    Article  CAS  Google Scholar 

  • Guo H, Zhang B, Wang G, Shen Z (2010) Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chem Geol 270:117–125

    Article  CAS  Google Scholar 

  • Hoshino T, Terahara T, Tsuneda S, Hirata A, Inamori Y (2005) Molecular analysis of microbial population transition associated with the start of denitrification in a wastewater treatment process. J Appl Microbiol 99:1165–1175

    Article  CAS  Google Scholar 

  • Hu LG, Cai Y (2009) Biogeochemistry of arsenic. Prog Chem (Chin J) 21:458–466

    CAS  Google Scholar 

  • Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53:1801–1805

    Article  CAS  Google Scholar 

  • Ishii S, Yamamoto M, Kikuchi M, Oshima K, Hattori M, Otsuka S, Senoo K (2009) Microbial populations responsive to denitrification-inducing conditions in rice paddy soil, as revealed by comparative 16S rRNA gene analysis. Appl Environ Microbiol 75:7070–7078

    Article  CAS  Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71

    Article  CAS  Google Scholar 

  • Jiang Z, Li P, Wang Y, Li B, Deng Y, Wang Y (2014) Vertical distribution of bacterial populations associated with arsenic mobilization in aquifer sediments from the Hetao plain, Inner Mongolia. Environ Earth Sci. 71:311–318

    Article  CAS  Google Scholar 

  • Khan NI, Owens G, Bruce D, Naidu R (2009) Human arsenic exposure and risk assessment at the landscape level: a review. Environ Geochem Health 31:143–166

    Article  CAS  Google Scholar 

  • Kniemeyer O, Probian C, Rosselló-Mora R, Harder J (1999) Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on dimethylmalonate. Appl Environ Microbiol 65:3319–3324

    CAS  Google Scholar 

  • Li P, Wang Y, Liu K, Tong L (2010) Bacterial community structure and diversity during establishment of an anaerobic bioreactor to treat swine wastewater. Water Sci Technol 61:243–252

    Article  CAS  Google Scholar 

  • Li P, Wang Y, Jiang Z, Jiang H, Li B, Dong H, Wang Y (2013) Microbial diversity in high arsenic groundwater in Hetao Basin of Inner Mongolia, China. Geomicrobiol J 30:897–909

    Article  Google Scholar 

  • Liao VHC, Chu YJ, Su YC, Hsiao SY, Wei CC, Liu CW, Liao CM, Shen WC, Chang FJ (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123:20–29

    Article  CAS  Google Scholar 

  • Luo T, Hu S, Cui J, Tian H, Jing C (2012) Comparison of arsenic geochemical evolution in the Datong Basin (Shanxi) and Hetao Basin (Inner Mongolia), China. Appl Geochem 27:2315–2323

    Article  CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  Google Scholar 

  • Mumford AC, Barringer JL, Benzel WM, Reilly PA, Young LY (2012) Microbial transformations of arsenic: mobilization from glauconitic sediments to water. Water Res 46:2859–2868

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  CAS  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  CAS  Google Scholar 

  • Osborne TH, Jamieson HE, Hudson-Edwards KA, Nordstrom DK, Walker SR, Ward SA, Santini JM (2010) Microbial oxidation of arsenite in a subarctic environment: diversity of arsenite oxidase genes and identification of a psychrotolerant arsenite oxidiser. BMC Microbiol 10:205

    Article  Google Scholar 

  • Pepi M, Protano G, Ruta M, Nicolardi V, Bernardini E, Focardi S, Gaggi C (2011) Arsenic-resistant Pseudomonas spp. and Bacillus sp. bacterial strains reducing As (V) to As (III), isolated from Alps soils, Italy. Folia Microbiol 56:29–35

    Article  CAS  Google Scholar 

  • Peters SC, Blum JD, Klaue B, Karagas MR (1999) Arsenic occurrence in New Hampshire drinking water. Environ Sci Technol 33:1328–1333

    Article  CAS  Google Scholar 

  • Ruiz-Chancho M, López-Sánchez J, Rubio R (2007) Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining. Anal Bioanal Chem 387:627–635

    Article  CAS  Google Scholar 

  • Shivaji S, Reddy G, Aduri R, Kutty R, Ravenschlag K (2004) Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cell Mol Biol 50:525–536

    CAS  Google Scholar 

  • Tanner MA, Shoskes D, Shahed A, Pace NR (1999) Prevalence of corynebacterial 16S rRNA sequences in patients with bacterial and “nonbacterial” prostatitis. J Clin Microbiol 37:1863–1870

    CAS  Google Scholar 

  • Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301

    Article  CAS  Google Scholar 

  • Thompson JR, Marcelino LA, Polz MF (2002) Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res 30:2083–2088

    Article  CAS  Google Scholar 

  • Vanloosdrecht MCM, Lyklema J, Norde W, Zehnder AJB (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87

    CAS  Google Scholar 

  • Wang Y, Li P, Li B, Webster G, Weightman AJ, Jiang Z, Jiang D, Deng Y, Wang Y (2014) Bacterial diversity and community structure in high arsenic aquifers in Hetao Plain of Inner Mongolia, China. Geomicrobiol J. 31:338–349

    Article  Google Scholar 

  • Webster G, Newberry CJ, Fry JC, Weightman AJ (2003) Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J Microbiol Methods 55:155–164

    Article  CAS  Google Scholar 

  • Winkel LH, Trang PTK, Lan VM, Stengel C, Amini M, Ha NT, Viet PH, Berg M (2011) Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc Natl Acad Sci 108:1246–1251

    Article  CAS  Google Scholar 

  • Yagi JM, Sims D, Brettin T, Bruce D, Madsen EL (2009) The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ Microbiol 11:2253–2270

    Article  CAS  Google Scholar 

  • Yuan C, Jiang G, He B (2005) Evaluation of the extraction methods for arsenic speciation in rice straw, Oryza sativa L., and analysis by HPLC-HG-AFS. J Anal At Spectrom 20:103–110

    Article  CAS  Google Scholar 

  • Zhang H, Ma D, Hu X (2002) Arsenic pollution in groundwater from Hetao Area, China. Environ Geol 41:638–643

    Article  CAS  Google Scholar 

  • Zhang LM, Liu F, Tan WF, Feng XH, Zhu YG, He J (2008) Microbial DNA extraction and analyses of soil iron–manganese nodules. Soil Biol Biochem 40:1364–1369

    Article  CAS  Google Scholar 

  • Zhou W, Fang J (2008) Determination of total sulphur in sludge by ICP-AES using microwave digestion. Anal Instrum 2:18–20

    Google Scholar 

  • Zhou J, Wu L, Deng Y, Zhi X, Jiang YH, Tu Q, Xie J, Van Nostrand JD, He Z, Yang Y (2011) Reproducibility and quantitation of amplicon sequencing-based detection. ISME J 5:1303–1313

    Article  CAS  Google Scholar 

  • Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34:4747–4753

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Natural Science Foundation of China (Grant No. 41372348, 41120124003), National Science Foundation for Post-doctoral Scientists of China (Grant No. 2012M521491, 2013T60757) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Grant No.CUG140505 and GBL11204).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, P., Jiang, D. et al. Vertical distribution of bacterial communities in high arsenic sediments of Hetao Plain, Inner Mongolia. Ecotoxicology 23, 1890–1899 (2014). https://doi.org/10.1007/s10646-014-1322-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1322-7

Keywords

Navigation