Skip to main content
Log in

Effects of microcystin-LR, linear alkylbenzene sulfonate and their mixture on lettuce (Lactuca sativa L.) seeds and seedlings

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Microcystin-LR (MCLR) and linear alkylbenzene sulfonate (LAS) are present widely in aquatic and terrestrial ecosystems, but their combined ecotoxicological risk is unknown. This study investigated the toxic effects of MCLR, LAS and their mixture on lettuce (Lactuca sativa L.) and evaluated MCLR accumulation level in lettuce with or without LAS. The changes in seed germination and shoot/root growth, responses of the antioxidative defense system, and the accumulation of MCLR in lettuce were tested to evaluate the single and combined toxic effect of MCLR and LAS in well-controlled conditions. The results showed that seedling growth (except for root elongation and leaf weight) was more sensitive to toxicant exposure than seed germination. For seedling leaves, lipid peroxidation was not observed when the antioxidative defense system (including superoxide dismutase, catalase and glutathione) was activated to relieve the adverse effects of oxidative stress via different pathways. Our results also confirmed that the interaction between MCLR and LAS was synergistic. Both toxicants in combination not only significantly inhibited seedling growth, but also increased the activities of superoxide dismutase and catalase, as well as the contents of glutathione. Furthermore, LAS dramatically enhanced the accumulation of MCLR in the plant, thus leading to a reduction in quality and yield and posing greater potential risk to humans via consumption of these edible plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abel PD (1974) Toxicity of synthetic detergents to fish and aquatic invertebrates. J Fish Biol 6:279–298

    Article  CAS  Google Scholar 

  • Amado LL, Monserrat JM (2010) Oxidative stress generation by microcystins in aquatic animals: why and how. Environ Int 36:226–235

    Article  CAS  Google Scholar 

  • Blasco J, Sarasquete C, González-Mazo E, Gómez-Parra A (1997) Influencia del alquilbenceno sulfonato lineal sobre algunas actividades enzimáticas en la almeja Ruditapes philippinarum. VII Seminario Quimica Marina: 149–159

  • Bogialli S, Bruno M, Curini R, Di Corcia A, Fanali C, Lagana A (2006) Monitoring algal toxins in lake water by liquid chromatography tandem mass spectrometry. Environ Sci Technol 40:2917–2923

    Article  CAS  Google Scholar 

  • Bouaïcha N, Maatouk I (2004) Microcystin-LR and nodularin induce intracellular glutathione alteration, reactive oxygen species production and lipidperoxidation in primary cultured rat hepatocytes. Toxicol Lett 148:53–63

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Calamari D, Marchetti R (1973) The toxicity of mixtures of metals and surfactants to rainbow trout (Salmo gairdneri rich.). Water Res 7:1453–1464

    Article  Google Scholar 

  • Carlsen L, Metzon MB, Kjelsmark J (2002) Linear alkylbenzene sulfonates (LAS) in the terrestrial environment. Sci Total Environ 290:225–230

    Article  CAS  Google Scholar 

  • Carmichael WW, Azevedo SM, An JS, Molica RJ, Jochimsen EM, Lau S, Rinehart KL, Shaw GR, Eaglesham GK (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Perspect 109:663–668

    Article  CAS  Google Scholar 

  • Chen JZ, Song LR, Dai J, Gan NQ, Liu Z (2004) Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 43:393–400

    Article  CAS  Google Scholar 

  • Chen W, Song LR, Gan NQ, Li L (2006) Sorption, degradation and mobility of microcystins in Chinese agriculture soils: risk assessment for groundwater protection. Environ Pollut 144:752–758

    Article  CAS  Google Scholar 

  • Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring, and management. E and FN Spon, London pp 416

  • Crush JR, Briggs LR, Sprosen JM, Nichols SN (2008) Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce. Environ Toxicol 23:246–252

    Article  CAS  Google Scholar 

  • Di Salvatore M, Carafa AM, Carratù G (2008) Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere 73:1461–1464

    Article  CAS  Google Scholar 

  • Ellaman GL (1959) Tissue sulfhydryl group. Arch Biochem Biophys 82:70–72

    Article  Google Scholar 

  • Gatidou G, Thomaidis NS (2007) Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays. Aquat Toxicol 85:184–191

    Article  CAS  Google Scholar 

  • Gisi U (1996) Synergistic interaction of fungicides in mixtures. Phytopathol 86:1273–1279

    CAS  Google Scholar 

  • Goth LA (1991) A simple method for determination of serum catalase activity, and revision of reference range. Clin Chim Acta 196:143–152

    Article  CAS  Google Scholar 

  • Günther P, Pestemer W (1992) Phytotoxicity of surfactants to higher plants. In: Hall JE, Sauerbeck DE, Hermite PL (eds) Effects of organic contaminants in sewage sludge on soil fertility, plants and animals. Office for Official Publications of the European Communities, Brussels, Belgium, pp 103–111

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Hoeger SJ, Hitzfeld BC, Dietrich DR (2005) Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicol Appl Pharmacol 203:231–242

    Article  CAS  Google Scholar 

  • Hu CL, Gan NQ, He ZK, Song LR (2008) A novel chemiluminescent immunoassay for microcystin (MC) detection based on gold nanoparticles label and its application to MC analysis in aquatic environmental samples. Int J Environ Anal Chem 88:267–277

    Article  CAS  Google Scholar 

  • Jensen J (1999) Fate and effects of linear alkylbenzene sulphonates (LAS) in the terrestrial environment. Sci Total Environ 226:93–111

    Article  CAS  Google Scholar 

  • Jensen J, Sverdrup L (2002) Joint toxicity of linear alkylbenzene sulfonates and pyrene on Folsomia fimetaria. Ecotoxicol Environ Saf 52:75–81

    Article  CAS  Google Scholar 

  • Jensen J, Smith SR, Krogh PH, Versteeg DJ, Temara A (2007) European risk assessment of LAS in agricultural soil revisited: species sensitivity distribution and risk estimates. Chemosphere 69:880–892

    Article  CAS  Google Scholar 

  • Jones GJ, Orr PT (1994) Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res 28:871–876

    Article  CAS  Google Scholar 

  • Jonsson CM, Aoyama H (2007) In vitro effect of agriculture pollutants and their joint action on Pseudokirchneriella subcapitata acid phosphatase. Chemosphere 69:849–855

    Article  CAS  Google Scholar 

  • Lewis MA (1991) Chronic and sublethal toxicities of surfactants to aquatic animals: a review and risk assessment. Water Res 25:101–113

    Article  CAS  Google Scholar 

  • Lewis MA (1992) The effects of mixtures and other environmental modifying factors on the toxicities of surfactants to freshwater and marine life. Water Res 26:1013–1023

    Article  CAS  Google Scholar 

  • MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192

    Article  CAS  Google Scholar 

  • Máthé C, M-Hamvas M, Vasas G, Surányi G, Bácsi I, Beyer D, Tóth S, Tímár M, Borbély G (2007) Microcystin-LR, a cyanobacterial toxin, induces growth inhibition and histological alterations in common reed (Phragmites australis) plants regenerated from embryogenic calli. New Phytol 176:824–835

    Article  Google Scholar 

  • Matthijs E, Holt MS, Kiewiet A, Rijs GBJ (1999) Environmental monitoring for linear alkylbenzene sulfonate, alcohol ethoxylate, alcohol ethoxy sulfate, alcohol sulfate, and soap. Environ Toxicol Chem 18:2634–2644

    Article  CAS  Google Scholar 

  • Mishra VG, Srivastava G, Prasad SM (2001) Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation. Sci Hortic 120:373–378

    Article  Google Scholar 

  • OECD (Organization for Economic Cooperation, Development) (1984) OECD Guidelines for Testing of Chemicals, No. 208, Terrestrial Plants, Growth Test. OECD, Paris, France

    Google Scholar 

  • Oyanagui Y (1984) Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal Biochem 142:290–296

    Article  CAS  Google Scholar 

  • Pflugmacher S (2004) Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aqua toxicol 70:169–178

    Article  CAS  Google Scholar 

  • Pflugmacher S, Wiegand C, Beattie KA, Codd GA, Steinberg CEW (1998a) Uptake of the cyanobacterial hepatotoxin microcystin-LR by aquatic macrophytes. J Appl Bot 72:228–232

    CAS  Google Scholar 

  • Pflugmacher S, Wiegand C, Oberemm A, Beattie KA, Krause E, Codd GA et al (1998b) Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxication. Biochimica Biophysica Acta Gen Subjects 1425:527–533

    Article  CAS  Google Scholar 

  • Pflugmacher S, Jung K, Lundvall L, Neumann S, Peuthert A (2006) Effects of cyanobacterial toxins and cyanobacterial cell-free crude extract on germination of Alfalfa (Medicago sativa.) and induction of oxidative stress. Environ Toxicol Chem 25:2381–2387

    Article  CAS  Google Scholar 

  • Pflugmacher S, Aulhorn M, Grimm B (2007) Influence of a cyanobacterial crude extract containing microcystin-LR on the physiology and antioxidative defence systems of different spinach variants. New Phytol 175:482–489

    Article  CAS  Google Scholar 

  • Pires LMD, Karlsson KM, Meriluoto JAO, Kardinaal E, Visser PM, Siewertsen K et al (2004) Assimilation and depuration of microcystin-LR by the zebra mussel, Dreissena polymorpha. Aquat Toxicol 69:385–396

    Article  CAS  Google Scholar 

  • Posmyk MM, Kontek R, Janas KM (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf 72:596–602

    Article  CAS  Google Scholar 

  • Saqrane S, Ghazali IE, Ouahid Y, Hassni ME, Hadrami IE, Bouarab L et al (2007) Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: microcystin accumulation, detoxication and oxidative stress induction. Aquat Toxicol 83:284–294

    Article  CAS  Google Scholar 

  • Soares RM, Magalh es VF, Azevedo S (2004) Accumulation and depuration of microcystins (cyanobacteria hepatotoxins) in Tilapia rendalli (Cichlidae) under laboratory conditions. Aquat Toxicol 70:1–10

    Article  CAS  Google Scholar 

  • Song LR, Chen W, Peng L, Wan N, Gan NQ, Zhang XM (2007) Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Res 41:2853–2864

    Article  CAS  Google Scholar 

  • Verge C, Moreno A, Bravo J, Berna JL (2001) Influence of water hardness on the bioavailability and toxicity of linear alkylbenzene sulphonate (LAS). Chemosphere 44:1749–1757

    Article  CAS  Google Scholar 

  • Wang XF, Zhou QX (2005) Ecotoxicological effects of cadmium on three ornamental plants. Chemosphere 60:16–21

    Article  CAS  Google Scholar 

  • Wang XD, Sun C, Wang Y, Wang LS (2002) Quantitative structure-activity relationships for the inhibition toxicity to root elongation of Cucumis sativus of selected phenols and interspecies correlation with Tetrahymena pyriformis. Chemosphere 46:153–161

    Article  CAS  Google Scholar 

  • Wu XQ, Xiao BD, Gong Y, Wang Z, Chen XG, Li RH (2008) Kinetic study of the 2-methyl-3-methoxy-4-phenylbutanoic acid produced by oxidation of microcystin in aqueous solutions. Environ Toxicol Chem 27:2019–2026

    Article  CAS  Google Scholar 

  • Yin LY, Huang JQ, Li DH, Liu YD (2005) Microcystin-RR uptake and its effects on the growth of submerged macrophyte Vallisneria natans (Lour.) Hara. Environ Toxicol 20:308–313

    Article  CAS  Google Scholar 

  • Yu XZ, Trapp S, Zhou PH, Peng XY, Cao X (2006) Response of weeping willows to linear alkylbenzene sulfonate. Chemosphere 64:43–48

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We specially thank to Dr. Nanqin Gan and Miss Jin Liu of the Institute of Hydrobiology, Chinese Academy of Science for ELISA analysis. This research was supported by the National Key Project for Basic Research (2008CB418101), the Special Program for Water Pollution Control in China (2008ZX07102-005) and the Science Foundation of NSFC-Yunnan Province (grant number U0833604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bangding Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Xiao, B., Song, L. et al. Effects of microcystin-LR, linear alkylbenzene sulfonate and their mixture on lettuce (Lactuca sativa L.) seeds and seedlings. Ecotoxicology 20, 803–814 (2011). https://doi.org/10.1007/s10646-011-0632-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0632-2

Keywords

Navigation