Skip to main content
Log in

Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

This study aimed at assessing the toxic effects of industrial effluents using duckweed (Lemna minor L.) plants as a test system. Growth inhibition test according to standardized protocol (ISO 20079) was performed. The suitability of the Comet assay (indicates DNA damage) and certain parameters such as peroxidase activity and lipid peroxidation level, as biomarkers for environmental monitoring was evaluated. The water samples were collected monthly over a 3-month period from the stream near the industrial estate of Savski Marof, Croatia. All samples caused inhibition of growth rates based on frond number and biomass as well as decrease of chlorophylls content. In contrast, peroxidase activity, malondialdehyde content and tail extent moment (measure of DNA strand breaks) markedly increased. Obtained data demonstrate the relevance of duckweed as sensitive indicators of water quality as well as the significance of selected biological parameters in the reliable assessment of phyto- and genotoxic potential of complex wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aravind P, Prasad MNV (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 41:391–397

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Axtell NR, Sternberg SPK, Claussen K (2003) Lead and nickel removal using Microspora and Lemna minor. Bioresource Technol 89:41–48

    Article  CAS  Google Scholar 

  • Bacon MA, Thompson DS, Davies WJ (1997) Can cell wall peroxidase activity explain the leaf growth response of Lolium temulentum during drought? J Exp Bot 48:2075–2085

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. In: Colowick SP, Kaplan NO (eds) Methods in enzymology vol II. Academic Press, New York, pp 764–775

    Chapter  Google Scholar 

  • Elez L, Orescanin V, Sofilic T, Mikulic N, Ruk D (2008) Application of alkaline solid residue of electric arc furnace dust for neutralization/purification of electroplating wastewaters. J Environ Sci Health, Part A 43:1417–1423

    Article  CAS  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of Angiosperms. Ann Rev Plant Physiol 37:165–186

    CAS  Google Scholar 

  • Garnczarska M, Ratajczak L (2000a) Metabolic responses of Lemna minor to lead ions I. Growth, chlorophyll level and activity of fermentative enzymes. Acta Physiol Plant 22:423–427

    Article  CAS  Google Scholar 

  • Garnczarska M, Ratajczak L (2000b) Metabolic responses of Lemna minor to lead ions II. Induction of antioxidant enzymes in roots. Acta Physiol Plant 22:429–432

    Article  CAS  Google Scholar 

  • Gichner T, Patková Z, Száková J, Demnerová K (2004) Cadmium induces DNA damage in tobacco roots, but no DNA damage, somatic mutations or homologous recombination in tobacco leaves. Mutat Res 559:49–57

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I-kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Horvat T, Vidaković-Cifrek Ž, Oreščanin V, Tkalec M, Pevalek-Kozlina B (2007) Toxicity assessment of heavy metal mixtures by Lemna minor L. Sci Total Environ 384:229–238

    Article  CAS  Google Scholar 

  • Hou W, Chen X, Song G, Wang Q, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    Article  CAS  Google Scholar 

  • ISO/DIS 20079 (2004) Water quality—determination of the toxic effect of water constituents and waste water to duckweed (Lemna minor)—duckweed growth inhibition test. ISO TC 147/SC 5/WG 5

  • John R, Ahmad P, Gadgil K, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54:262–270

    CAS  Google Scholar 

  • Kanoun-Boulé M, Vicente JAF, Nabais C, Prasad MNV, Freitas H (2009) Ecophysiological tolerance of duckweeds exposed to copper. Aquat Toxicol 91:1–9

    Article  Google Scholar 

  • Kungolos AG, Brebbia CA, Samaras CP, Popov V (2006) Environ Toxicol. WIT Press, Southampton, UK

    Google Scholar 

  • Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266

    Article  Google Scholar 

  • Lah B, Malovrh S, Narat M, Cepeljnik T, Marinsek-Logar R (2004) Detection and quantification of genotoxicity in wastewater-treated Tetrahymena thermophila using the comet assay. Environ Toxicol 19:545–553

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic membranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lin CC, Kao CH (2001) Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. Plant Soil 230:135–143

    Article  CAS  Google Scholar 

  • Mackenzie SM, Waite S, Metcalfe DJ, Joyce CB (2003) Landfill leachate ecotoxicity experiments using Lemna minor. Water Air Soil Poll Focus 3:171–179

    Article  CAS  Google Scholar 

  • Matysik J, Alia BhaluB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Mohan BS, Hosetti BB (1999) Aquatic plants for toxicity assessment. Environ Res 81:259–274

    Article  CAS  Google Scholar 

  • Naumann B, Eberius M, Appenroth K-J (2007) Growth rate based dose–response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J Plant Physiol 164:1656–1664

    Article  CAS  Google Scholar 

  • Orescanin V, Lovrencic I, Mikelic L, Lulic S (2008) Applicability of MiniPal 4 compact EDXRF spectrometer for soil and sediment analysis. X-ray spectrom 37:508–511

    Article  CAS  Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  Google Scholar 

  • Poschenrieder C, Barceló J (2004) Water relations in heavy metal stressed plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn edn. Springer, Berlin, pp 249–270

    Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  Google Scholar 

  • Siegel BZ, Galston AW (1967) The isoperoxidases of Pisum sativum. Plant Physiol 42:221–226

    Article  CAS  Google Scholar 

  • Siesko MM, FlemingWJ GrossfeldRM (1997) Stress protein synthesis and peroxidase activity in a submersed aquatic macrophyte exposed to cadmium. Environ Toxicol Chem 16:1755–1760

    Article  CAS  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK (2006) Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol 80:405–415

    Article  CAS  Google Scholar 

  • Steinberg R (1946) Mineral requirement of Lemna minor. Plant Physiol 21:42–48

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Wang W, Freemark K (1995) The use of plants for environmental monitoring and assessment. Ecotox Environ Safe 30:289–301

    Article  CAS  Google Scholar 

  • Žegura B, Heath E, Černoša A, Filipič M (2009) Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere 75:1453–1460

    Article  Google Scholar 

Download references

Acknowledgments

This study has been funded by Croatian Ministry of Science, Education and Sport, as part of Project no. 119-1191196-1202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Radić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radić, S., Stipaničev, D., Cvjetko, P. et al. Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism. Ecotoxicology 19, 216–222 (2010). https://doi.org/10.1007/s10646-009-0408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0408-0

Keywords

Navigation