Skip to main content
Log in

Population genetic structure of the Amazonian black flannelmouth characin (Characiformes, Prochilodontidae: Prochilodus nigricans Spix & Agassiz, 1829): contemporary and historical gene flow of a migratory and abundant fishery species

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

In the present study, sequences of the mtDNA control region (834 bp) were analyzed from 337 specimens of Prochilodus nigricans from sites along the main channel of the Amazonas River and three major tributaries, Madeira, Purus, and Juruá. The results of the analysis of molecular variance revealed that a large part of the genetic variation occurred within the populations analyzed (~85 %). Analysis with SAMOVA and Barriers suggested that the upper Madeira River and Purus Rivers had diverged genetically from the other samples, indicating restricted gene flow among these areas, while sites within the remaining range exhibited relatively little population structure. The high degree of structuring observed in the Madeira River basin population may be attributed to the presence of rapids along its upper course, while the genetic divergence found in the upper Purus River suggests historical connection between the upper Purus and upper Madeira Rivers followed by slow genetic drift due to large effective population sizes. However, given the life history and hypothesized evolutionary strategy of this species, we urge caution in interpreting that this targeted species is not at risk of overexploitation due to contemporary abundance. In order to preserve genetic diversity, we recommend enforcement of management regimes for regional stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amado MV, Hrbek T, Farias IP (2011) A molecular perspective on systematics, taxonomy and classification Amazonian discus fishes of the genus Symphysodon. Int J Evol Biol 2011:360654

    Article  PubMed  PubMed Central  Google Scholar 

  • Araújo-Lima CARM, Ruffino, ML (2004) Migratory fishes of the Brazilian Amazon. In: Carolsfield J, Harvey B, Ross C, Baer, A (eds) Migratory Fishes of South America. Biology, Fisheries, and Conservation Status. Co-published by World Fisheries Trust/ World Bank/International Development Research Center, pp 233–302

  • Barbarino Duque A, Taphorn DC, Winemiller KO (1998) Ecology of the coporo, Prochilodus mariae (Characiformes, Prochilodontidae), and status of annual migrations in western Venezuela. Environ Biol Fish 53:33–46

    Article  Google Scholar 

  • Barthem RB, Fabré NN (2003) Biologia e diversidade dos recursos pesqueiros da Amazônia. In: Ruffino ML (ed) A Pesca e os Recursos Pesqueiros na Amazônia Brasileira. ProVarzea, Manaus, pp. 11–55

    Google Scholar 

  • Barthem RB, Goulding M (2007) An unexpected ecosystem: the Amazon as revealed by fisheries. Amazon Conservation Association and Missouri Botanical Garden Press, Saint Louis, Missouri

  • Batista JS, Alves-Gomes JA (2006) Phylogeography of Brachyplatystoma rousseauxii (Siluriformes - Pimelodidae) in the Amazon Basin offers preliminary evidence for the first case of “homing” for an Amazonian migratory catfish. Genet Mol Res 5:723–740

    PubMed  Google Scholar 

  • Batista VS, Petrere M Jr (2003) Characterization of the commercial fish production landed at Manaus, Amazonas state, Brazil. Acta Amaz 33:53–66

    Article  Google Scholar 

  • Bayley PB, Petrere Jr M (1989) Amazon fisheries: assessment methods, current status and management options. In: Dodge DP (ed) Proceedings of the International Large River Symposium. Proceedings of the International Large River Symposium. Can Spec Publ Fish Aquat Sci, 106, pp 385–398

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300

    Google Scholar 

  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537

    Article  PubMed  PubMed Central  Google Scholar 

  • Burt A, Kramer DL, Nakatsuru K, Spry C (1988) The tempo of reproduction in Hyphessobrycon pulchripinnis (Characidae), with a discussion on the biology of ‘multiple spawning’in fishes. Environ Biol Fish 22:15–27

    Article  Google Scholar 

  • Carvajal-Vallejos FM, Duponchelle F, Desmarais E, Cerqueira F, Querouil S, Nuñez J, García-Dávila C, Renno J-F (2014) Genetic structure in the Amazonian catfish Brachyplatystoma rousseauxii: influence of life history strategies. Genetica 142:323–336

    Article  CAS  PubMed  Google Scholar 

  • Castro RMC (1993) Prochilodus britskii, a new species of prochilodontid fish (Ostariophysi: Characiformes), from the Rio Apiaca, Rio Tapajos system, Mato Grosso, Brazil. Proc Biol Soc Wash 106:57–62

    Google Scholar 

  • Colatreli OP, Meliciano NV, Toffoli D, Farias IP, Hrbek T (2012) Deep phylogenetic divergence and lack of taxonomic concordance in species of Astronotus (Cichlidae). Int J Evol Biol 2012:915265

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins SM, Bickford N, McIntyre PB, Coulon A, Ulseth AJ, Taphorn DC, Flecker AS (2013) Population structure of a Neotropical migratory fish: contrasting perspectives from genetics and otolith microchemistry. Trans Am Fish Soc 142:1192–1201

    Article  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson KA, Wilson RR Jr (1999) Amphi-Panamic germinates of Snook (Percoidei: Centropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes. Mol Phylogenet Evol 13:208–213

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phys Bull 19:11–15

    Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52–64

    Article  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Edwards SV, Beerli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854

    CAS  PubMed  Google Scholar 

  • Espurt N, Baby P, Brusset S, Roddaz M, Hermoza W, Barbarand J (2010) The Nazca Ridge and uplift of the Fitzcarrald Arch: implications for regional geology in northern South America. In: Hoorn C, Wesselingh FP (eds) Amazonia: Landscape and Species Evolution: A Look into the Past. Wiley-Blackwell; pp 89–100

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farias IP, Hrbek T (2008) Patterns of diversification in the discus fishes (Symphysodon spp. Cichlidae) of the Amazon basin. Mol Phylogenet Evol 49:32–43

    Article  CAS  PubMed  Google Scholar 

  • Farias IP, Torrico JP, García-Dávila C, Santos MCF, Hrbek T, Renno J-F (2010) Are rapids a barrier for floodplain fishes of the Amazon basin? A demographic study of the keystone floodplain species Colossoma macropomum (Teleostei: Characiformes). Mol Phylogenet Evol 56:1129–1135

    Article  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Flecker AS (1996) Ecosystem engineering by a dominant detritivore in a diverse tropical stream. Ecology 77:1845–1854

    Article  Google Scholar 

  • Flowers JM, Schroeter SC, Burton RS (2002) The recruitment sweepstakes has many winners: genetic evidence from the sea urchin Strongylocentrotus purpuratus. Evolution 56:1445–1453

    Article  CAS  PubMed  Google Scholar 

  • Frederico RG, Farias IP, Araújo MLG, Charvet-Almeida P, Alves-Gomes JA (2012) Phylogeography and conservation genetics of the Amazonian freshwater stingray Paratrygon aiereba Müller & Henle, 1841 (Chondrichthyes: Potamotrygonidae). Neotrop Ichthyol 10:71–80

    Article  Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Geisler R, Annibal S (1987) Ecology of the cardinal tetra, Paracheirodon axelrodi (Pisces, Characoidea), in the River Basin of the Rio Negro, Brazil, as well as breeding related factors. Trop. Fish Hobbyist 35:66–87

    Google Scholar 

  • Genner MJ, Seehausen O, Lunt DH, Joyce DA, Shaw PW, Carvalho GR, Turner GF (2007) Age of cichlids: new dates for ancient lake fish radiations. Mol Biol Evol 24:1269–1282

    Article  CAS  PubMed  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Article  Google Scholar 

  • Goulding M (1979) Ecologia de Pesca do Rio Madeira. INPA, Manaus

    Google Scholar 

  • Goulding M (1981) Man and fisheries on an Amazon frontier. Dr. W. Junk Publishers, The Hague

    Book  Google Scholar 

  • Gradado-Lorencio C, Araújo-Lima CARM, Lobón-Cerviá J (2005) Abundance: distribution relationships in fish assembly of the Amazonas floodplain lakes. Ecography 28:515–520

    Article  Google Scholar 

  • Gravena W, Farias IP, da Silva MNF, da Silva VMF, Hrbek T (2014) Looking to the past and the future: were the Madeira River rapids a geographic barrier to the boto (Cetacea: Iniidae)? Conserv Genet 15:619–629

    Google Scholar 

  • Gravena W, da Silva VMF, da Silva MNF, Farias IP, Hrbek T (2015) Living between rapids: genetic structure and hybridization in botos (Cetacea: Iniidae: Inia spp.) of the Madeira River, Brazil. Biol J Linn Soc 114:764–777

    Article  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hedrick PW (2006) Genetic polymorphism in heterogeneous environments: the age of genomics. Annu Rev Ecol Syst 37:67–93

    Article  Google Scholar 

  • Hellberg ME, Burton RS, Neigel JE, Palumbi SR (2002) Genetic assessment of connectivity among marine populations. Bull Mar Sci 70:273–290

    Google Scholar 

  • Heller R, Chikhi L, Siegismund HR (2013) The confounding effect of population structure on Bayesian skyline plot inferences of demographic history. PLoS One 8:e62992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho SYW, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 22:1561–1568

    Article  CAS  PubMed  Google Scholar 

  • Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    Article  CAS  PubMed  Google Scholar 

  • Hrbek T, Farias IP, Crossa M, Sampaio I, Porto JIR, Meyer A (2005) Population genetic analysis of Arapaima gigas, one of the largest freshwater fishes of the Amazon basin: implications for its conservation. Anim Conserv 8:297–308

    Article  Google Scholar 

  • Hrbek T, Crossa M, Farias IP (2007) Conservation strategies for Arapaima gigas (Schinz, 1822) and the Amazonian várzea ecosystem. Braz J Biol 67:909–917

    Article  CAS  PubMed  Google Scholar 

  • Hrbek T, Vasconcelos WR, Rebêlo GH, Farias IP (2008) Phylogenetic relationships of south American alligatorids and the caiman of Madeira River. J Exp Zool Part A Ecol Genet Physiol 309A:588–599

    Article  CAS  Google Scholar 

  • Jennings S, Kaiser MJ (1998) The effects of fishing on marine ecosystems. Adv Mar Biol 34:201–352

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks R (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Junk WJ, Soares MGM, Saint-Paul U (1997) The fish. In: Junk WJ (ed) The Central Amazon: ecology of a pulsing system. Springer, Berlin Heidelberg, pp. 385–408

    Chapter  Google Scholar 

  • Kimura M (1969) The number of heterozygous nucleotides sites maintained in a finite population due to the steady flux of mutations. Genetics 61:893–903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine H (1953) Genetic equilibrium when more than one ecological niche is available. Am Nat 87:331–333

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lima ÁC, Araújo-Lima CARM (2004) The distributions of larval and juvenile fishes in Amazonian rivers of different nutrient status. Freshw Biol 49:787–800

    Article  Google Scholar 

  • Lovejoy NR, Collette BB (2001) Phylogenetic relationships of new world needlefishes (Teleostei: Belonidae) and the biogeography of transitions between marine and freshwater habitats. Copeia 2001:324–338

    Article  Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonoclueases. Proc Natl Acad Sci U S A 76:5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa LE, Pereira LHG, Costa-Silva GJ, Roxo FF, Batista JS, Formiga K, Foresti F, Oliveira C (2015) Genetic structure and historical diversification of catfish Brachyplatystoma platynemum (Siluriformes: Pimelodidae) in the Amazon basin with implications for its conservation. Ecol Evol 5:2005–2020

  • Pearse DE, Arndt AD, Valenzuela N, Miller BA, Cantarelli VH, Sites JW (2006) Estimating population structure under nonequilibrium conditions in a conservation context: continent-wide population genetics of the giant Amazon River turtle, Podocnemis expansa (Chelonia; Podocnemididae). Mol Ecol 15:985–1006

    Article  CAS  PubMed  Google Scholar 

  • Petrere M Jr, Barthem RB, Agudelo Cordoba E, Corrales B (2004) Review of the large catfish fisheries in the upper Amazon and the stock depletion of piraíba (Brachyplatystoma filamentosum Lichtenstein). Rev Fish Biol Fish 14:403–414

    Article  Google Scholar 

  • Pinsky ML, Palumbi SR (2014) Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol 23:29–39

    Article  PubMed  Google Scholar 

  • Queiroz HL, Sobanski MB, Magurran AE (2010) Reproductive strategies of red-bellied piranha (Pygocentrus nattereri Kner, 1858) in the white waters of the Mamirauá flooded forest, central Brazilian Amazon. Environ Biol Fish 89:11–19

    Article  Google Scholar 

  • Rambaut A, Drummond AJ, Suchard M (2013) Tracer v1.6, Available from http://beast.bio.ed.ac.uk/Tracer

  • Reis RE, Kullander SO, Ferraris Jr CJ (2003) Check List of the Freshwater Fishes of South and Central America, pp 734

  • Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, Chenuil A, Chiari Y, Dernat R, Duret L, Faivre N, Loire E, Lourenco JM, Nabholz B, Roux C, Tsagkogeorga G, Weber AAT, Weinert LA, Belkhir K, Bierne N, Glémin S, Galtier N (2014) Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515:261–263

    Article  CAS  PubMed  Google Scholar 

  • Ruffino ML (2004) A Pesca e os Recursos Pesqueiros na Amazônia Brasileira. IBAMA-PROVÁRZEA, Manaus, p. 272

    Google Scholar 

  • Ruffino ML, Soares EC, Silva CO, Barthem RB, Batista VS, Estupian G, Pinto W (2006) Estatística Pesqueira do Amazonas e Pará: 2003. IBAMA-PROVÁRZEA, v. 1, Manaus, AM, Brazil

  • Santos MCF, Ruffino ML, Farias IP (2007) High levels of genetic variability and panmixia of the tambaqui Colossoma macropomum (Cuvier, 1818) in the main channel of the Amazon River. J Fish Biol 71A:33–44

    Article  Google Scholar 

  • Sato A, Takezaki N, Tichy H, Figueroa F, Mayer WE, Klein J (2003) Origin and speciation of haplochromine fishes in east African crater lakes investigated by the analysis of their mtDNA, Mhc genes, and SINEs. Mol Biol Evol 20:1448–1462

    Article  CAS  PubMed  Google Scholar 

  • Simões PI, Lima AP, Farias IP (2012) Restricted natural hybridization between two species of litter frogs on a threatened landscape in southwestern Brazilian Amazonia. Conserv Genet 13:1145–1159

    Article  Google Scholar 

  • Soares MGM, Costa LC, Siqueira-Souza FK, Anjos HDB, Yamamoto CK, Freitas CEC (2007) Peixes de Lagos do Médio rio Solimões. EDUA, Manaus

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor BW, Flecker AS, Hall RO Jr (2006) Loss of a harvested fish species disrupts carbon flow in a diverse tropical river. Science 313:833–836

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1996) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  Google Scholar 

  • Torrente-Vilara G, Zuanon J, Leprieur F, Oberdorff T, Tedesco PA (2011) Effects of natural rapids and waterfalls on fish assemblage structure in the Madeira River (Amazon Basin). Ecol Freshw Fish 20:588–597

    Article  Google Scholar 

  • Turner TF, McPhee MV, Campbell P, Winemiller KO (2004) Phylogeography and intraspecific genetic variation of prochilodontid fishes endemic to rivers of northern South America. J Fish Biol 64:186–201

    Article  CAS  Google Scholar 

  • Vonhof HB, Kaandorp RJG (2010) Climate variation in Amazonia during the Neogene and the quaternary. In: Hoorn C, Wesselingh FP (eds) Amazonia: landscape and species evolution: a look into the past. Blackwell Publishing Ltd, Oxford, pp. 201–210

    Google Scholar 

  • Willis SC, Macrander J, Farias IP, Ortí G (2012) Simultaneous delimitation of species and quantification of interspecific hybridization in Amazonian peacock cichlids (genus Cichla) using multi-locus data. BMC Evol Biol 12:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Willis SC, Winemiller KO, Montaña CG, Macrander J, Reiss P, Farias IP, Ortí G (2015) Population genetics of the speckled peacock bass (Cichla temensis), South America’s most important inland sport fishery. Conserv Genet. doi:10.1007/s10592-015-0744-y

    Google Scholar 

  • Winemiller KO (2005) Life history strategies, population regulation, and implications for fisheries management. Can J Fish Aquat Sci 62:872–885

    Article  Google Scholar 

  • Winemiller KO, Jepsen DB (1998) Effects of seasonality and fish movement on tropical river food webs. J Fish Biol 53:267–296

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations. Volume 2. The theory of Gene frequencies. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgments

This research was supported by the MCT/CNPq/PPG7 557090/2005-9, CNPq/CT-Amazonia 554057/2006-9 and CNPq/ CT-Amazonia 575603/2008-9. Brazilian permits for field collection and molecular analyses were given by IBAMA/SISBIO 11325-1. TH and IPF were supported by a Bolsa de Pesquisa scholarship from CNPq during the study and VM by a CNPq fellowship. This study is part of VM’s Master’s thesis in the Fisheries Sciences in the Tropics graduate program of UFAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izeni Pires Farias.

Electronic supplementary material

Supplemental Figure 1.

Haplotype network of Prochilodus nigricans haplotypes estimated using Network. Circle sizes correspond to the number of observations, and missing haplotypes remain unfilled. Shading refers to the locality in which a haplotype was observed. (GIF 668 kb)

High resolution image (TIFF 1824 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, V.N., Willis, S.C., Teixeira, A.S. et al. Population genetic structure of the Amazonian black flannelmouth characin (Characiformes, Prochilodontidae: Prochilodus nigricans Spix & Agassiz, 1829): contemporary and historical gene flow of a migratory and abundant fishery species. Environ Biol Fish 100, 1–16 (2017). https://doi.org/10.1007/s10641-016-0547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-016-0547-0

Keywords

Navigation