Skip to main content

Advertisement

Log in

Estimating behavior in a black box: how coastal oceanographic dynamics influence yearling Chinook salmon marine growth and migration behaviors

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Ocean currents or temperature may substantially influence migration behavior in many marine species. However, high-resolution data on animal movement in the marine environment are scarce; therefore, analysts and managers must typically rely on unvalidated assumptions regarding movement, behavior, and habitat use. We used a spatially explicit, individual-based model of early marine migration with two stocks of yearling Chinook salmon to quantify the influence of external forces on estimates of swim speed, consumption, and growth. Model results suggest that salmon behaviorally compensate for changes in the strength and direction of ocean currents. These compensations can result in salmon swimming several times farther than their net movement (straight-line distance) would indicate. However, the magnitude of discrepancy between compensated and straight-line distances varied between oceanographic models. Nevertheless, estimates of relative swim speed among fish groups were less sensitive to the choice of model than estimates of absolute individual swim speed. By comparing groups of fish, this tool can be applied to management questions, such as how experiences and behavior may differ between groups of hatchery fish released early vs. later in the season. By taking into account the experiences and behavior of individual fish, as well as the influence of physical ocean processes, our approach helps illuminate the “black box” of juvenile salmon behavior in the early marine phase of the life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson, J. J., E. Gurarie, C. Bracis, B. J. Burke, and K. L. Laidre. 2013. Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecol Model 264:83–97

  • Baptista AM, Seaton C, Wilkin M, Riseman S, Needoba JA, Maier D, Turner PJ, Karna T, Lopez JE, Herfort L et al (2015) Infrastructure for collaborative science and societal applications in the Columbia River estuary. Front Earth Sci Chin 9(4):659–682.

  • Beauchamp DA, Stewart DJ, Thomas GL (1989) Corroboration of a bioenergetics model for sockeye salmon. Trans Am Fish Soc 118:597–607

    Article  Google Scholar 

  • Brett, J. R. (1995) Energetics.in C. Groot, L. Margolis, and W. C. Clarke, editors. Physiological Ecology of Pacific Salmon. UBC Press, Vancouver, British Columbia

  • Brodeur RD, Daly EA, Schabetsberger RA, Mier KL (2007) Interannual and interdecadal variability in juvenile coho salmon (Oncorhynchus kisutch) diets in relation to environmental changes in the northern California current. Fish Oceanogr 16:395–408

    Article  Google Scholar 

  • Brodeur RD, Daly EA, Benkwitt CE, Morgan CA, Emmett RL (2011) Catching the prey: sampling juvenile fish and invertebrate prey fields of juvenile coho and Chinook salmon during their early marine residence. Fish Res 108:65–73

    Article  Google Scholar 

  • Brown R, Geist D, Mesa M (2006) Use of electromyogram telemetry to assess swimming activity of adult spring Chinook Salmon migrating past a Columbia River dam. Trans Am Fish Soc 135:281–287

    Article  Google Scholar 

  • Burke BJ, Anderson JJ, Baptista AM (2014) Evidence for multiple navigational sensory capabilities of Chinook salmon. Aquat Biol 20:77–90

    Article  Google Scholar 

  • Burla M, Baptista AM, Zhang YL, Frolov S (2010) Seasonal and interannual variability of the Columbia River plume: a perspective enabled by multiyear simulation databases. Journal of Geophysical Research-Oceans 115:C00B16

    Article  Google Scholar 

  • Burnham, K. P. and D. R. Anderson. (2010) Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. Springer, New York

  • Byron CJ, Burke BJ (2014) Salmon Ocean migration models suggest a variety of population-specific strategies. Rev Fish Biol Fish 24:737–756

    Article  Google Scholar 

  • Chapman, J. W., R. H. Klaassen, V. A. Drake, S. Fossette, G. C. Hays, J. D. Metcalfe, A. M. Reynolds, D. R. Reynolds, and T. Alerstam. 2011. Animal orientation strategies for movement in flows. Curr Biol 21:R861–R870

  • Chittenden, C. M., J. L. A. Jensen, D. Ewart, S. Anderson, S. Balfry, E. Downey, A. Eaves, S. Saksida, B. Smith, S. Vincent, D. Welch, and R. S. McKinley. 2010. Recent Salmon declines: a result of lost feeding opportunities due to bad timing? PLoS ONE 5(8):e12423

  • CMOP. (2013) Virtual Columbia River. Page Interactive database available from http://www.stccmop.org/datamart/virtualcolumbiariver/simulationdatabases (accessed April 2013). Center for Marine and Coastal Observation & Prediction

  • Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG, Butler PJ (2004) Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol 19:334–343

    Article  PubMed  Google Scholar 

  • Daly, E., R. Brodeur, and L. Weitkamp. (2009) Ontogenetic shifts in diets of juvenile and Subadult Coho and Chinook Salmon in coastal marine waters: important for marine survival? Trans Am Fish Soc 138:1420–1438

  • Davis KA, Banas NS, Giddings SN, Siedlecki SA, MacCready P, Lessard EJ, Kudela RM, Hickey BM (2014) Estuary-enhanced upwelling of marine nutrients fuels coastal productivity in the U.S. Pacific northwest. Journal of Geophysical Research-Oceans 119:8778–8799

    Article  Google Scholar 

  • DeAngelis, D. L. and L. J. Gross. (1992). Individual-based Models and Approaches in Ecology: Populations, Communities, and Ecosystems. Chapman & Hall, New York

  • Duffy EJ, Beauchamp DA (2011) Rapid growth in the early marine period improves the marine survival of Chinook salmon (Oncorhynchus tshawytscha) in Puget sound, Washington. Can J Fish Aquat Sci 68:232–240

    Article  Google Scholar 

  • Emmett, R. L., P. J. Bentley, and G. K. Krutzikowsky. (2001) Ecology of marine predatory and prey fishes off the Columbia River, 1998 and 1999.in D. O. Commerce, editor. NOAA Fisheries, Seattle, WA

  • Emmett RL, Brodeur RD, Orton PM (2004) The vertical distribution of juvenile salmon (Oncorhynchus spp.) and associated fishes in the Columbia River plume. Fish Oceanogr 13:392–402

    Article  Google Scholar 

  • Fiechter J, Huff DD, Martin BT, Jackson DW, Edwards CA, Rose KA, Curchitser EN, Hedstrom KS, Lindley ST, Wells BK (2015) Environmental conditions impacting juvenile Chinook salmon growth off Central California: an ecosystem model analysis. Geophys Res Lett 42(8):2910–2917

    Article  Google Scholar 

  • Fisher JP, Weitkamp LA, Teel DJ, Hinton SA, Orsi JA, Farley EV Jr, Morris JFT, Thiess ME, Sweeting RM, Trudel M (2014) Early ocean dispersal patterns of Columbia River Chinook and Coho Salmon. Trans Am Fish Soc 143:252–272

    Article  Google Scholar 

  • Gaspar P, Georges JY, Fossette S, Lenoble A, Ferraroli S, Le Maho Y (2006) Marine animal behaviour: neglecting ocean currents can lead us up the wrong track. Proceedings of the Royal Society B-Biological Sciences 273:2697–2702

    Article  PubMed Central  Google Scholar 

  • Giddings SN, MacCready P, Hickey BM, Banas NS, Davis KA, Siedlecki SA, Trainer VL, Kudela RM, Pelland NA, Connolly TP (2014) Hindcasts of potential harmful algal bloom transport pathways on the Pacific northwest coast. Journal of Geophysical Research-Oceans 119:2439–2461

    Article  Google Scholar 

  • Grimm, V. and S. F. Railsback. (2005) Individual-based modeling and ecology. Princeton University Press, Princeton

  • Haidvogel DB, Arango HG, Hedstrom K, Beckmann A, Malanotte-Rizzoli P, Shchepetkin AF (2000) Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dynamics of Atmospheres and Oceans 32:239–281

    Article  Google Scholar 

  • Hanson, P., T. Johnson, D. Schindler, and J. Kitchell. (1997) Fish bioenergetics 3.0. University of Wisconsin, Sea Grant Institute. Center for Limnology, Madison.

  • Healey, M. C. (1991) Life history of Chinook salmon (Oncorhynchus tshawytscha).in C. Groot and L. Margolis, editors. Pacific salmon life histories. University of British Columbia Press, Vancouver, BC

  • Hewett, S. W. and B. L. Johnson. (1992) Fish bioenergetics model 2. University of Wisconsin, Sea Grant Institute, Madison, WI

  • Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, Harcourt RG, Holland KN, Iverson SJ, Kocik JF, Mills Flemming JE, Whoriskey FG (2015) Aquatic animal telemetry: a panoramic window into the underwater world. Science 348:1255642

    Article  PubMed  Google Scholar 

  • Jacobson, K., B. Peterson, M. Trudel, J. Ferguson, C. Morgan, D. Welch, A. Baptista, B. Beckman, R. Brodeur, E. Casillas, R. Emmett, J. Miller, D. Teel, T. Wainwright, L. Weitkamp, J. Zamon, and K. Fresh. (2012) The marine ecology of juvenile Columbia River basin salmonids: a synthesis of Research 1998–2011. Northwest Power and Conservation Council, Portland

  • Kalinowski, S. T., K. R. Manlove, and M. L. Taper. (2007) ONCOR a computer program for genetic stock identification. www.montana.edu/kalinowski/Software/ONCOR. html

  • Kärna T, Baptista AM (2016) Evaluation of a long-term hindcast simulation for the Columbia River estuary. Ocean Model 99:1–14.

  • Kärna T, Baptista AM, Lopez JE, Turner PJ, McNeil C, Sanford TB (2015) Numerical modeling of circulation in high-energy estuaries: a Columbia River estuary benchmark. Ocean Model 88:54–71.

  • Kent AJR, Ungerer CAA (2006) Analysis of light lithophile elements (Li, Be, B) by laser ablation ICP-MS: comparison between magnetic sector and quadrupole ICP-MS. Am Mineral 91:1401–1411

    Article  CAS  Google Scholar 

  • Krutzikowsky G, Emmett R (2005) Diel differences in surface trawl fish catches off Oregon and Washington. Fish Res 71:365–371

    Article  Google Scholar 

  • Lohmann KJ, Lohmann CM, Endres CS (2008) The sensory ecology of ocean navigation. J Exp Biol 211:1719–1728

    Article  PubMed  Google Scholar 

  • Matala AP, Hess JE, Narum SR (2011) Resolving adaptive and demographic divergence among Chinook salmon populations in the Columbia River basin. Trans Am Fish Soc 140:783–807

    Article  Google Scholar 

  • McMichael GA, Skalski JR, Deters KA (2011) Survival of juvenile Chinook Salmon during barge transport. N Am J Fish Manag 31:1187–1196

    Article  Google Scholar 

  • McMichael GA, Hanson AC, Harnish RA, Trott DM (2013) Juvenile salmonid migratory behavior at the mouth of the Columbia River and within the plume. Animal. Biotelemetry:1–14

  • Miller JA (2009) The effects of temperature and water concentration on the otolith incorporation of barium and manganese in black rockfish Sebastes melanops. J Fish Biol 75:39–60

    Article  CAS  PubMed  Google Scholar 

  • Miller JA, Gray A, Merz J (2010) Quantifying the contribution of juvenile migratory phenotypes in a population of Chinook salmon Oncorhynchus tshawytscha. Mar Ecol Prog Ser 408:227–240

    Article  Google Scholar 

  • Miller JA, Butler VL, Simenstad CA, Backus DH, Kent AJR, Gillanders B (2011) Life history variation in upper Columbia River Chinook salmon (Oncorhynchus tshawytscha): a comparison using modern and ~500-year-old archaeological otoliths. Can J Fish Aquat Sci 68:603–617

    Article  Google Scholar 

  • Miller JA, Teel DJ, Baptista A, Morgan CA, Bradford M (2013) Disentangling bottom-up and top-down effects on survival during early ocean residence in a population of Chinook salmon (Oncorhynchus tshawytscha. Can J Fish Aquat Sci 70:617–629

    Article  Google Scholar 

  • Miller JA, Teel DJ, Peterson WT, Baptista AM (2014) Assessing the relative importance of local and regional processes on the survival of a threatened salmon population. PLoS One 9:e99814

    Article  PubMed  PubMed Central  Google Scholar 

  • Neilson JD, Geen GH (1982) Otoliths of Chinook Salmon (Oncorhynchus tshawytscha) - daily growth increments and factors influencing their production. Can J Fish Aquat Sci 39:1340–1347

    Article  Google Scholar 

  • NOAA. (1992) Endandered and threatened species: threatened status for Snake River spring/summer Chinook salmon in Federal Register 57(78). National Oceanic and Atmospheric Administration, Seattle, WA

  • Peterson WT, Morgan CA, Fisher JP, Casillas E (2010) Ocean distribution and habitat associations of yearling coho (Oncorhynchus kisutch) and Chinook (O. tshawytscha) salmon in the northern California current. Fish Oceanogr 19:508–525

    Article  Google Scholar 

  • Putman NF, Lohmann KJ, Putman EM, Quinn TP, Klimley AP, Noakes DL (2013) Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon. Curr Biol 23:312–316

    Article  CAS  PubMed  Google Scholar 

  • Putman NF, Scanlan MM, Billman EJ, O’Neil JP, Couture RB, Quinn TP, Lohmann KJ, Noakes DL (2014) An inherited magnetic map guides ocean navigation in juvenile Pacific salmon. Curr Biol 24:446–450

    Article  CAS  PubMed  Google Scholar 

  • Ruzicka JJ, Brodeur RD, Emmett RL, Steele JH, Zamon JE, Morgan CA, Thomas AC, Wainwright TC (2012) Interannual variability in the northern California current food web structure: changes in energy flow pathways and the role of forage fish, euphausiids, and jellyfish. Progress in. Oceanography 102:19–41

    Google Scholar 

  • Sandford BP, Zabel RW, Gilbreath LG, Smith SG (2012) Exploring latent mortality of juvenile salmonids related to migration through the Columbia River hydropower system. Trans Am Fish Soc 141:343–352

    Article  Google Scholar 

  • Scheuerell MD, Zabel RW, Sandford BP (2009) Relating juvenile migration timing and survival to adulthood in two species of threatened Pacific salmon (Oncorhynchus spp. J Appl Ecol 46:983–990

    Article  Google Scholar 

  • Seeb LW, Antonovich A, Banks AA, Beacham TD, Bellinger AR, Blankenship SM, Campbell AR, Decovich NA, Garza JC, Guthrie CM, Lundrigan TA, Moran P, Narum SR, Stephenson JJ, Supernault KJ, Teel DJ, Templin WD, Wenburg JK, Young SE, Smith CT (2007) Development of a standardized DNA database for Chinook salmon. Fisheries 32:540–552

    Article  Google Scholar 

  • Siedlecki SA, Banas NS, Davis KA, Giddings S, Hickey BM, MacCready P, Connolly T, Geier S (2015) Seasonal and interannual oxygen variability on the Washington and Oregon continental shelves. Journal of Geophysical Research-Oceans 120:608–633

    Article  Google Scholar 

  • Sutherland DA, MacCready P, Banas NS, Smedstad LF (2011) A model study of the Salish Sea estuarine circulation. J Phys Oceanogr 41:1125–1143

    Article  Google Scholar 

  • Teel DJ, Burke BJ, Kuligowski DR, Morgan CA, Van Doornik DM (2015) Genetic identification of Chinook Salmon: stock-specific distributions of juveniles along the Washington and Oregon coasts. Marine and coastal. Fisheries 7:274–300

    Google Scholar 

  • Thorstad E, Økland F, Finstad B, Sivertsgård R, Plantalech N, Bjørn P, McKinley RS (2007) Fjord migration and survival of wild and hatchery-reared Atlantic salmon and wild brown trout post-smolts. Hydrobiologia 582:99–107

    Article  Google Scholar 

  • Tomaro LM, Teel DJ, Peterson WT, Miller JA (2012) When is bigger better? Early marine residence of middle and upper Columbia River spring Chinook salmon. Mar Ecol Prog Ser 452:237–252

    Article  Google Scholar 

  • Tucker S, Trudel M, Welch DW, Candy JR, Morris JFT, Thiess ME, Wallace C, Beacham TD (2012) Annual coastal migration of juvenile Chinook salmon: static stock-specific patterns in a highly dynamic ocean. Mar Ecol Prog Ser 449:245–262

    Article  Google Scholar 

  • Waples RS, Teel DJ, Myers JM, Marshall AR (2004) Life-history divergence in Chinook salmon: Historic contingency and parallel evolution. Evolution 58:386–403

    Article  PubMed  Google Scholar 

  • Weitkamp L (2010) Marine distributions of Chinook salmon from the west coast of North America determined by coded wire tag recoveries. Trans Am Fish Soc 139:147–170

    Article  Google Scholar 

  • Weitkamp LA, Teel DJ, Liermann M, Hinton SA, Van Doornik DM, Bentley PJ (2015) Stock-specific size and timing at ocean entry of Columbia River juvenile Chinook Salmon and Steelhead: implications for early ocean growth. Marine and coastal. Fisheries 7:370–392

    Google Scholar 

  • Welch DW, Melnychuk MC, Rechisky ER, Porter AD, Jacobs MC, Ladouceur A, McKinley RS, Jackson GD (2009) Freshwater and marine migration and survival of endangered Cultus Lake sockeye salmon (Oncorhynchus nerka) smolts using POST, a large-scale acoustic telemetry array. Can J Fish Aquat Sci 66:736–750

    Article  Google Scholar 

  • Welch DW, Melnychuk MC, Payne JC, Rechisky EL, Porter AD, Jackson GD, Ward BR, Vincent SP, Wood CC, Semmens J (2011) In situ measurement of coastal ocean movements and survival of juvenile Pacific salmon. Proc Natl Acad Sci U S A 108:8708–8713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodson LE, Wells BK, Weber PK, MacFarlane RB, Whitman GE, Johnson RC (2013) Size, growth, and origin-dependent mortality of juvenile Chinook salmon Oncorhynchus tshawytscha during early ocean residence. Mar Ecol Prog Ser 487:163–175

    Article  Google Scholar 

  • Zabel, R. W. and J. G. Williams. (2002) Selective mortality in Chinook salmon: what is the role of human disturbance? Ecol Appl 12:173–183

  • Zhang Y, Baptista AM (2008) SELFE: A semi-implicit Eulerian–Lagrangian finite-element model for cross-scale ocean circulation. Ocean Model 21(3-4):71–96.

Download references

Acknowledgments

Chinook salmon catch data were obtained during a survey funded by the Bonneville Power Administration and NOAA Fisheries. Parker MacCready conducted the ROMS model simulation used here and graciously provided the output. Many people assisted with the project organization and data collection, including Ed Casillas, Bill Peterson, Ric Brodeur, Bob Emmett, Kym Jacobson, Cheryl Morgan, Jen Zamon, Brian Beckman, Laurie Weitkamp, Don Van Doornik, David Kuligowski, Tom Wainwright, Joe Fisher, Susan Hinton, and Cindy Bucher. We thank Lisa Crozier, Eric Buhle, James Faulkner, and Mark Scheuerell for helpful discussions related to data analysis. Steve Smith, David Huff, Beth Sanderson, and JoAnne Butzerin provided useful comments on earlier drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Burke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burke, B.J., Anderson, J.J., Miller, J.A. et al. Estimating behavior in a black box: how coastal oceanographic dynamics influence yearling Chinook salmon marine growth and migration behaviors. Environ Biol Fish 99, 671–686 (2016). https://doi.org/10.1007/s10641-016-0508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-016-0508-7

Keywords

Navigation