Skip to main content

Advertisement

Log in

Evidence of prey partition for the three sympatric Chromis species (Perciformes: Pomacentridae) based on ecomorphological analyses

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Ecomorphological adaptations represent the response of organisms to environmental factors during evolution. The jaw bones of three sympatric species of Chromis (Chromis notata, Chromis fumea and Chromis albicauda) were assessed using a geometric morphometric analysis, and were compared with prey composition as determined by stomach content analyses. According to a canonical variate analysis based on 48 landmarks, the three species show distinct differences in the premaxilla, dentary, angular, and retroarticular. They feed mainly on planktonic copepods, which represent ca. 90 % of their total diets; however, their diets slightly but significantly differ in the frequencies of occurrence of amphipods, euphausiids, mysids, decapods, and polychaetes. A comprehensive review indicates that the thick mandible of C. notata is an adaptive trait which confers the capability to feed on relatively harder prey items than does C. fumea, in which the mandible is less robust. However, the protrusive ability of the upper jaw in C. fumea is enhanced relative to that in C. notata and C. albicauda, because of a long ascending process in C. fumea. The long thin lower jaw of C. fumea is regarded as a morpho-functional adaption for effectively catching pelagic prey, such as planktonic copepod, in contrast to chewing and biting of prey. Our results firstly suggest evidence of prey partition for the sympatric three Chromis species (C. notata, C. fumea and C. albicauda) based on comparison between jaw bone structure and prey compostion, may help to understand evolutionary histories among species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams DC (1999) Methods for shape analysis of landmark data from articulated structures. Evol Ecol Res 1:959–970

    Google Scholar 

  • Aguilar-Medrano R, Frederich B, De Luna E, Balart EF (2011) Patterns of morphological evolution of the cephalic region in damselfishes (Perciformes: Pomacentridae) of the eastern Pacific. Biol J Linn Soc 102:593–613

    Article  Google Scholar 

  • Albertson RC, Kocher TD (2001) Assessing morphological differences in an adaptive trait: a landmark-based morphometric approach. J Exp Zool 289:385–403

    Article  CAS  PubMed  Google Scholar 

  • Albertson RC, Streelman JT, Kocher TD (2003) Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes. Proc Natl Acad Sci U S A 100:5252–5257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allen GR, Erdmann MV (2012) Pomacentridae, In: Reef Fishes of the East Indies, vol II. Tropical Reef Res Perth Australia, Australia, pp 561–630

    Google Scholar 

  • Barel CDN (1983) Towards a constructional morphology of cichlid fishes (Teleostei, Perciformes). Neth J Zool 33:357–424

    Article  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology (section on landmarks). Cambridge Univ Press, Cambridge, pp 59–66

    Google Scholar 

  • Cadrina SX, Friedland KD (1999) The utility of image processing techniques for morphometric analysis and stock identification. Fish Res 43:129–139

    Article  Google Scholar 

  • Case JE, Westneat MWW, Marshall CD (2008) Feeding biomechanics of juvenile red snapper (Lutjanus campechanus) from the Northwestern Gulf of Mexico. J Exp Biol 211:3826–3835

    Article  PubMed  Google Scholar 

  • Cavalcanti MJ, Monteiro LF, Lopes PRD (1999) Landmark-based morphometric analysis in selected species of serranid fishes (Perciformes: Teleostei). Zool Stud 38:287–294

    Google Scholar 

  • Chihara M, Murano M (1997) An illustrated guide to marine plankton in Japan. Tokai Univ Press, Tokyo (In Japanese)

    Google Scholar 

  • Cooper WJ, Westneat MW (2009) Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches. BMC Evol Biol 9:24

    Article  PubMed Central  PubMed  Google Scholar 

  • Coughlin DJ, Strickler JR (1990) Zooplankton capture by a coral reef fish: an adaptative response to evasive prey. Environ Biol Fish 29:35–42

    Article  Google Scholar 

  • Douglas ME, Matthews WJ (1992) Does morphology predict ecology? Hypothesis testing within a freshwater stream fish assemblage. Oikos 65:213–224

    Article  Google Scholar 

  • Emery AR (1973) Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida keys. Bull Mar Sci 23:649–770

    Google Scholar 

  • Frederich B, Pilet A, Parmentier E, Vandewalle P (2008) Comparative trophic morphology in eight species of damselfishes (Pomacentridae). J Morphol 269:175–188

    Article  PubMed  Google Scholar 

  • Frederich B, Fabri G, Lepoint G, Vandewalle P, Parmentier E (2009) Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Recif of Toliara, Madagascar. Ichthyol Res 56:10–17

    Article  Google Scholar 

  • Frederich B, Vandewalle P (2011) Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae). BMC Evol Biol 11:82

    Article  PubMed Central  PubMed  Google Scholar 

  • Frederich B, Liu S-YV, Dai C-F (2012) Morphological and genetic divergences in a coral reef damselfish, Pomacentrus coelestis. Evol Biol 39:359–370

    Article  Google Scholar 

  • Frederich B, Sorenson L, Santini F, Slater GJ, Alfaro ME (2013) Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). Am Nat 181:94–113

    Article  PubMed  Google Scholar 

  • Froese R, Pauly D (Editors) (2013) Fish Base. World Wide Web electronic publication. www.fishbase.org, version (10/2013)

  • Gluckmann I, Vandewalle P (1998) Morphofunctional analysis of the feeding apparatus in four Pomacentridae species: Dascyllus aruanus, Chromis retrofasciata, Chrysiptera biocellata and C. unimaculata. Ital J Zool 65:421–424

    Article  Google Scholar 

  • Grubich JR, Rice AN, Westneat MW (2008) Functional morphology of bite mechanics in the great barracuda (Sphyraena barracuda). Zool 111:16–29

    Article  Google Scholar 

  • Helland IP, Vollestad LA, Freyhof J, Mehner T (2009) Morphological differences between two ecologically similar sympatric fishes. J Fish Biol 75:2756–2767

    Article  CAS  PubMed  Google Scholar 

  • Jang-Liaw NH, Tang KL, Hui C-F, Shao K-T (2002) Molecular phylogeny of 48 species of damselfishes (Perciformes: Pomacentridae) using 12S mtDNA sequences. Mol Phylogenet Evol 25:445–454

    Article  CAS  PubMed  Google Scholar 

  • Kim YU, Kim JK (1996) Morphological study of the genus Chromis from Korea – I. External morphology of three damselfishes of the genus Chromis (Teleostei: Pomacentridae) from Korea waters. Korean J Ichthyol 8:23–22

    Google Scholar 

  • Kim YU, Kim JK (1997) Morphological study of the genus Chromis from Korea - II. Comparison of skeletal characters of Chromis notata, Chromis analis and Chromis fumea. J Kor Fish Soc 30:562–573

    Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an intergrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Koh JR, Park YC (2007) Species identification and molecular phylogenetic position of Korean damselfishes (Pomacentridae: Chromimae) based on DNA bioinformation. Korean J Ichthyol 19:274–285

    Google Scholar 

  • Kotrschal K (1989) Trophic ecomorphology in eastern pacific blennioid fishes: character transformation of oral jaws and associated change of their biological roles. Environ Biol Fish 24:199–218

    Article  Google Scholar 

  • Liem KF (1993) Ecomorphology of the teleostean skull. In: Hanken J, Hall BK (eds) The skull, functional and evolutionary mechanisms, vol 3. Univ. Chicago Press, Chicago, pp 422–452

    Google Scholar 

  • Mok EK-M, Munro AD (1991) Observations on the food and feeding adaptations of four species of small pelagic teleosts in streams of the Sungei Buloh Mangal, Singapore. Raffles Bull Zool 39:235–257

    Google Scholar 

  • Motta PJ (1988) Functional morphology of the feeding apparatus of ten species of Pacific butterflyfishes (Perciformes, Chaetodontidae): an ecomorphological approach. Environ Biol Fish 22:39–67

    Article  Google Scholar 

  • Nanami A, Shimose T (2012) Interspecific differences in prey items in relation to morphological characteristics among four lutjanid species (Lutjanus decussatus, L. fulviflamma, L. fulvus and L. gibbus). Environ Biol Fish 96:591–602

    Article  Google Scholar 

  • Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trop Oceanogr 5:665–847

    Google Scholar 

  • Requieron EA, Torres MAJ, Demayo CG (2012) Applications of relative warp analysis in describing of scale shape morphology between sexes of the snakehead fish Channa striata. Int J Ecol Environ Sci 1:205–209

    Google Scholar 

  • Rohlf FJ, Slice D (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59

    Article  Google Scholar 

  • Ruber L, Adams DC (2001) Evolutionary convergence of body shape and trophic morphology in cichlids from Lake Tanganyika. J Evol Biol 14:325–332

    Article  Google Scholar 

  • Song YS, Kim JK, Kim BJ (2013) First occurrence of Chromis albicauda (Pomacentridae, Perciformes) from Jeju Island, and re-assignment of yellow Chromis specimens from Korea. Anim Syst Evol Divers 29:253–258

    Article  Google Scholar 

  • Staab KL, Ferry LA, Hernandes LP (2011) Comparative kinematics of cypriniform premaxillary protrusion. Zool 115:65–77

    Article  Google Scholar 

  • Svanback R, Eklov P (2004) Morphology in perch affects habitat specific feeding efficiency. Funct Ecol 18:503–510

    Article  Google Scholar 

  • Stewart TA, Albertson RC (2010) Evolution of a unique predatory feeding apparatus: functional anatomy, development and a genetic locus for jaw laterality in Lake Tanganyika scale-eating cichlids. BMC Evol Biol 8:8

    Article  Google Scholar 

  • Taylor WR, Van Dyke GC (1985) Revised procedure for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium 9:107–121

    Google Scholar 

  • Tang KL (2001) Phylogenetic relationships among damselfishes (Teleostei: Pomacentridae) as determined by mitochondrial DNA data. Copeia 3:591–601

    Article  Google Scholar 

  • Toscano BJ, Pulcini D, Hayden B, Russo T, Kelly-Quinn M, Mariani S (2010) An ecomorphological framework for the coexistence of two cyprinid fish and their hybrids in a novel environment. Biol J Linn Soc 99:768–783

    Article  Google Scholar 

  • Wainwright PC (1991) Ecological morphology: experimental functional anatomy for ecological problems. Am Zool 31:680–693

    Google Scholar 

  • Wainwright PC, Richard BA (1995) Predicting patterns of prey use from morphology of fishes. Environ Biol Fish 44:97–113

    Article  Google Scholar 

  • Wainwright PC, Bellwood DR (2002) Ecomorphology of feeding in coral reef fishes. In: Sale PF (ed) Coral reef fishes. Dynamics and diversity in a complex ecosystem. Acad Press San Diego, San Diego, pp 33–55

    Chapter  Google Scholar 

  • Walker JA (1997) Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biol J Linn Soc 61:3–50

  • Waltzek TB, Wainwrigth PC (2003) Functional morphology of extreme jaw protrusion in neotropical cichlids. J Morphol 257:96–106

    Article  PubMed  Google Scholar 

  • Weaver DC (2001) Feeding ecology and functional morphology of Western Atlantic groupers (Serranidae: Epinephelinae). In: Presented at the 9th International Coral Reef Symposium Bali Indonesia Oct. 23–27 2001

  • Webb PW (1984) Body and fin form and strike tactics of four teleost predators attacking fathead minnow Pimephales promelas prey. Can J Fish Aquat Sci 41:157–165

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to anonymous reviewers for valuable advice and suggestions for improvement of the paper. We also thank to B. Frederich for helpful comments for geometric morphometrics. This research was supported by the Marine Fish Resources Bank of Korea (MFRBK). The surveys and fish collections carried out in this study comply with the current laws in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Koo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y.S., Kim, JK. Evidence of prey partition for the three sympatric Chromis species (Perciformes: Pomacentridae) based on ecomorphological analyses. Environ Biol Fish 98, 1265–1275 (2015). https://doi.org/10.1007/s10641-014-0357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-014-0357-1

Keywords

Navigation