Skip to main content

Advertisement

Log in

Carbon from littoral producers is the major source of energy for bottom-feeding fish in a tropical floodplain

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Bottom-feeding fish show great variation in trophic morphology, resulting in a wide array of feeding habits exploiting from periphyton in littoral habitats to ingesting larger amounts of litterfall from terrestrial habitats. Nevertheless, it has been proposed that, in temperate aquatic systems, the energetic demands from bottom-feeding fish are supplied by primary production from phytoplankton in pelagic habitats. Thus, we aimed to determine which of several energy sources support bottom-feeding fish in tropical aquatic systems, where primary producers are diverse. We performed samplings in the Paraná River floodplain from primary producers in littoral (periphyton), pelagic (phytoplankton) and terrestrial habitats (riparian vegetation). Using simultaneous signatures of C and N isotope ratios, we analysed the possible origin of available energy in muscles of nine different bottom-feeding fish species. We verified that seven of the nine fish species had the highest contribution of carbon from a littoral source compared to other energy sources, independent of trophic category. The importance of periphyton may be related to the high abundance of substrates (such as macrophytes) that are available in the littoral zone of tropical aquatic systems. Finally, we suggest that the actual carbon dynamics among bottom-feeding fish and primary producers is species-specific, varying within the same trophic guild, and therefore, it is possible to refute the assumption that each trophic guild is specialised for a distinct carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agostinho AA, Hahn NS, Gomes LC, Bini LM (1997) Estrutura trófica. In: Vazzoler AEAM, Agostinho AA, Hahn NS (eds) A planície de inundação do alto rio Paraná: aspectos físicos, biológicos e socioeconômicos. EDUEM, Maringá, pp 209–228

    Google Scholar 

  • Araújo-Lima CARM, Forsberg BR, Victoria R, Martinelli LA (1986) Energy sources for detritivorous fishes in the Amazon. Science 234:1256–1258

    Article  PubMed  Google Scholar 

  • Benedito-Cecilio E, Araújo-Lima CARM (2002) Variation in the carbon isotope composition of Semaprochilodus insignis, a detritivorous fish associated with oligotrophic and eutrophic Amazon rivers. J Fish Biol 60:1603–1607

    Article  CAS  Google Scholar 

  • Benedito-Cecilio E, Forsberg BR, Bittencourt MM, Martinelli LA (2000) Carbon sources of Amazonian fisheries. Fish Manag Ecol 7:305–315

    Article  Google Scholar 

  • Botto F, Gaitán E, Mianzan H, Acha M, Gilberto D, Schiariti A, Iribarne O (2011) Origin of resources and trophic pathways in a large SW Atlantic estuary: An evaluation using stable isotopes. Estuar Coast Shelf Sci 92:70–77

    Article  Google Scholar 

  • Bowen SH (1983) Detritivory in neotropical fish communities. Environ Biol Fish 9:137–144

    Article  Google Scholar 

  • Campos JB, Souza MC (1997) Vegetação. In: Vazzoler AEAM, Agostinho AA, Hahn NS (eds) A planície de inundação do alto rio Paraná: aspectos físicos, biológicos e socioeconômicos. EDUEM, Maringá, pp 331–342

    Google Scholar 

  • Casatti L, Mendes HF, Ferreira KM (2003) Aquatic macrophytes as feeding site for small fishes in the Rosana Reservoir, Paranapanema River, Southeastern Brazil. Braz J Biol 63:213–222

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Vander Zanden MJ, Heyvaert AC, Richards BC, Allen BC, Goldman CR (2005) The effects of cultural eutrophication on the coupling between pelagic primary producers and benthic consumers. Limnol Oceanogr 50:1368–1376

    Article  CAS  Google Scholar 

  • Fugi R, Hahn NS, Agostinho AA (1996) Feeding styles of five species of bottom-feeding fishes of the high Paraná River. Environ Biol Fish 46:297–307

    Article  Google Scholar 

  • Fugi R, Agostinho AA, Hahn NS (2001) Trophic morphology of five benthic-feeding fish species of a tropical floodplain. Braz J Biol 61:27–33

    CAS  PubMed  Google Scholar 

  • Gerking SD (1994) Feeding ecology of fish. Academic, San Diego

    Google Scholar 

  • Gorman OT, Yule DL, Stockwell JD (2012) Habitat use by fishes of Lake Superior. II. Consequences of diel habitat use for habitat linkages and habitat coupling in nearshore and offshore waters. Aquat Ecosyst Health Manag 15:354–367

    Google Scholar 

  • Hamilton SK, Lewis WM Jr (1992) Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezuela. Geochim Cosmochim Acta 56:4237–4246

    Article  CAS  Google Scholar 

  • Jones JI, Sayer CD (2003) Does the fish–invertebrate–periphyton cascade precipitate plant loss in shallow lakes? Ecology 84:2155–2167

    Article  Google Scholar 

  • Krumhansl KA, Scheibling RE (2011) Detrital production in Nova Scotian kelp beds: patterns and processes. Mar Ecol Prog Ser 421:67–82

    Article  Google Scholar 

  • Lopes CA, Benedito-Cecilio E, Martinelli LA, Souza MC (2006) Variability of 13C and 15 N in terrestrial and aquatic sources in the upper Paraná river basin, Paraná, Brazil. Acta Limnol Bras 18:281–292

    Google Scholar 

  • Lopes CA, Benedito-Cecilio E, Martinelli LA (2007) Variability in the carbon isotope signature of Prochilodus lineatus (Prochilodontidae, Characiformes) a bottom-feeding fish of the Neotropical region. J Fish Biol 70:1649–1659

    Article  CAS  Google Scholar 

  • Lövgren J, Persson L (2002) Fish-mediated indirect effects in a littoral food web. Oikos 96:150–156

    Article  Google Scholar 

  • Luek A, Morgan GE, Wissel B, Gunn JM, Ramcharan CW (2013) Impaired littoral energy pathways cause a shift to pelagic resources by fish in recovering lake food webs. Ecol Freshw Fish 22:348–360

    Article  Google Scholar 

  • McCutchan JH Jr, Lewis WM Jr, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390

    Article  CAS  Google Scholar 

  • Michener RH, Lajtha K (2007) Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, Oxford

    Book  Google Scholar 

  • Parnell A, Inger R, Bearhop S, Jackson AL (2008) SIAR: Stable Isotope Analysis in R. <http://cran.r-project.org/web/packages/siar>.

  • Parnell A, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One 5:e9672

    Article  PubMed Central  PubMed  Google Scholar 

  • Quevedo M, Svanback R, Eklov P (2009) Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90:2263–2274

    Article  PubMed  Google Scholar 

  • Ruitton S, Francour P, Boudouresque CF (2000) Relationships between algae, benthic herbivorous invertebrates and fishes in rocky sublittoral communities of a Temperate Sea (Mediterranean). Estuar Coast Shelf Sci 50:217–230

    Article  Google Scholar 

  • Schindler DE, Scheuerell MD (2002) Habitat coupling in lake ecosystems. Oikos 98:177–189

    Article  Google Scholar 

  • Sierszen ME, Peterson GS, Scharold JV (2006) Depth specific patterns in benthic–planktonic foodweb relationships relationships in Lake Superior. Can J Fish Aquat Sci 63:1496–1503

    Article  Google Scholar 

  • Thomaz SM, Dibble ED, Evangelista LR, Higuti J, Bini LM (2008) Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw Biol 53:358–367

    Google Scholar 

  • Torres IC, Inglett PW, Brenner M, Kenney WF, Reddy KR (2012) Stable isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status. J Paleolimnol 47:693–706

    Article  Google Scholar 

  • Vadeboncoeur Y, Jeppesen E, Vander Zanden MJ, Schierup HH, Christoffersen K, Lodge DM (2003) From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnol Oceanogr 48:1408–1418

    Article  Google Scholar 

  • Vander Zanden MJ, Vadeboncoeur Y (2002) Fishes as integrators of benthic and pelagic foodwebs in lakes. Ecology 83:2152–2161

    Article  Google Scholar 

  • Vander Zanden MJ, Cabana G, Rasmussem JB (1997) Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can J Fish Aquat Sci 54:1142–1158

    Article  Google Scholar 

  • West JB, Bowen GJ, Cerling TE, Ehleringer JR (2006) Stable isotopes as one of nature′s ecological recorders. Trends Ecol Evol 21:408–414

    Article  PubMed  Google Scholar 

  • Yossa MI, Araújo-Lima CARM (1998) Detritivory in two Amazonian fish species. J Fish Biol 52:1141–1153

    Article  Google Scholar 

Download references

Acknowledgments

We thank Brazilian National Agency for Scientific and Technological Development (CNPq) for its financial support. We also thank PELD (UEM-NUPELIA) field teams for their help in collecting the biological material and the laboratories of Zoology (DBI), Zooplankton, Phytoplankton, Periphyton, Riparian Vegetation, Limnology, and Zoobenthos (NUPELIA) for their logistical support. All authors are grateful to Maria S. R. Arita and João F. Hildebrant for help with bibliographical material. Finally, we thank Roger P. Mormul for critically reading this manuscript. The present research was conducted in agreement with the “Ethical Principles in Animal Research” adopted by the Brazilian College of Animal Experimentation (COBEA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno R. S. Figueiredo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, C.A., Manetta, G.I., Figueiredo, B.R.S. et al. Carbon from littoral producers is the major source of energy for bottom-feeding fish in a tropical floodplain. Environ Biol Fish 98, 1081–1088 (2015). https://doi.org/10.1007/s10641-014-0343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-014-0343-7

Keywords

Navigation