Skip to main content
Log in

Anti-tumor effects of nitrosylcobalamin against spontaneous tumors in dogs

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

An Erratum to this article was published on 03 May 2011

Summary

Purpose: Given the limited options available to treat canine cancers, the use of companion animals for evaluating new drugs may identify better therapies for veterinary and human oncology. The anti-tumor effects of nitrosylcobalamin (NO-Cbl), an apoptosis-inducing, vitamin B12-based carrier of nitric oxide (NO), was evaluated in four dogs with spontaneous cancer. Experimental Design: (1) A 13 year-old female spayed Giant Schnauzer with inoperable thyroid carcinoma and hypercalcemia. (2) A 6 year-old male neutered Golden Retriever with a malignant peripheral nerve sheath tumor (MPNST). (3) A ten yr-old neutered male Bichon Frise with apocrine gland anal sac adenocarcinoma (AGACA). (4) A 7 year-old female spayed Labrador mix with spinal meningioma following partial surgical resection. Tumor regression was measured by physical exam and verified using ultrasound (case 1) and MRI (case 2–4). Serum chemistries and hematologic parameters were monitored throughout the studies. Results: (1) The Giant Schnauzer demonstrated a 77% reduction in tumor volume after ten weeks of daily NO-Cbl treatment. (2) The Golden Retriever demonstrated a 53% reduction in tumor volume after 15 months of daily NO-Cbl therapy. (3) The Bichon Frise demonstrated a 43% regression of the primary tumor and a 90% regression of an iliac lymph node measured by MRI after 15 months of treatment. After 61 months, the dog currently has stable disease, normal liver enzymes, CBC analysis, and no evidence of toxicity. (4) The Labrador demonstrated complete regression of the residual tumor after 6 months of treatment. Conclusion: We have shown previously that NO-Cbl is endocytosed by malignant cells, resulting in intra-tumoral NO release. In this study, we have shown that daily long-term use of NO-Cbl induced responses in all dogs without any signs of toxicity. The use of NO-Cbl capitalizes on the tumor-specific properties of the vitamin B12 receptor and represents a promising anti-cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AGACA:

Apocrine gland anal sac adenocarcinoma

Apo2L/TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

MPNST:

Malignant peripheral nerve sheath tumor

SM:

Spinal meningioma

TCII:

Transcobalamin II

References

  1. Bauer JA, Morrison BH, Grane RW et al (2002) Effects of interferon beta on transcobalamin II-receptor expression and antitumor activity of nitrosylcobalamin. J Natl Cancer Inst 94(13):1010–1019

    PubMed  CAS  Google Scholar 

  2. Collins DA, Hogenkamp HP (1997) Transcobalamin II receptor imaging via radiolabeled diethylene- triaminepentaacetate cobalamin analogs. J Nucl Med 38(5):717–723

    PubMed  CAS  Google Scholar 

  3. Collins DA, Hogenkamp HP, O'Connor MK et al (2000) Biodistribution of radiolabeled adenosylcobalamin in patients diagnosed with various malignancies. Mayo Clin Proc 75(6):568–580

    Article  PubMed  CAS  Google Scholar 

  4. Chawla-Sarkar M, Bauer JA, Lupica JA et al (2003) Suppression of NF-kappa B survival signaling by nitrosylcobalamin sensitizes neoplasms to the anti-tumor effects of Apo2L/TRAIL. The Journal of biological chemistry 278(41):39461–39469

    Article  PubMed  CAS  Google Scholar 

  5. Bauer JA, Lupica JA, Schmidt H et al (2007) Nitrosylcobalamin potentiates the anti-neoplastic effects of chemotherapeutic agents via suppression of survival signaling. PLoS ONE 2(12):e1313

    Article  PubMed  Google Scholar 

  6. Tang Z, Bauer JA, Morrison B, Lindner DJ (2006) Nitrosylcobalamin promotes cell death via S nitrosylation of Apo2L/TRAIL receptor DR4. Mol Cell Biol 26(15):5588–5594

    Article  PubMed  CAS  Google Scholar 

  7. Ashkenazi A, Pai RC, Fong S et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. Journal of Clinical Investigation 104(2):155–162

    Article  PubMed  CAS  Google Scholar 

  8. Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Reviews Cancer 2(6):420–430

    Article  PubMed  CAS  Google Scholar 

  9. Bauer JA (1998) Synthesis, characterization and nitric oxide release profile of nitrosylcobalamin: a potential chemotherapeutic agent. Anticancer Drugs 9(3):239–244

    Article  PubMed  CAS  Google Scholar 

  10. de La Coussaye JE, Houeto P, Sandouk P, Levillain P, Sassine A, Riou B (1994) Pharmacokinetics of hydroxocobalamin in dogs. J Neurosurg Anesthesiol 6(2):111–115

    Google Scholar 

  11. Brehm DM, Vite CH, Steinberg HS, Haviland J, van Winkle T (1995) A retrospective evaluation of 51 cases of peripheral nerve sheath tumors in the dog. J Am Anim Hosp Assoc 31(4):349–359

    PubMed  CAS  Google Scholar 

  12. Liptak JM (2007) Canine thyroid carcinoma. Clin Tech Small Anim Pract 22(2):75–81

    Article  PubMed  Google Scholar 

  13. Klein MK, Powers BE, Withrow SJ et al (1995) Treatment of thyroid carcinoma in dogs by surgical resection alone: 20 cases (1981–1989). J Am Vet Med Assoc 206(7):1007–1009

    PubMed  CAS  Google Scholar 

  14. Turrel JM, McEntee MC, Burke BP, Page RL (2006) Sodium iodide I 131 treatment of dogs with nonresectable thyroid tumors: 39 cases (1990–2003). J Am Vet Med Assoc 229(4):542–548

    Article  PubMed  CAS  Google Scholar 

  15. Worth AJ, Zuber RM, Hocking M (2005) Radioiodide (131I) therapy for the treatment of canine thyroid carcinoma. Aust Vet J 83(4):208–214

    Article  PubMed  CAS  Google Scholar 

  16. Pack L, Roberts RE, Dawson SD, Dookwah HD (2001) Definitive radiation therapy for infiltrative thyroid carcinoma in dogs. Vet Radiol Ultrasound 42(5):471–474

    Article  PubMed  CAS  Google Scholar 

  17. Brearley MJ, Hayes AM, Murphy S (1999) Hypofractionated radiation therapy for invasive thyroid carcinoma in dogs: a retrospective analysis of survival. J Small Anim Pract 40(5):206–210

    Article  PubMed  CAS  Google Scholar 

  18. Fineman LS, Hamilton TA, de Gortari A, Bonney P (1998) Cisplatin chemotherapy for treatment of thyroid carcinoma in dogs: 13 cases. J Am Anim Hosp Assoc 34(2):109–112

    PubMed  CAS  Google Scholar 

  19. Knapp DW, Richardson RC, Bonney PL, Hahn K (1988) Cisplatin therapy in 41 dogs with malignant tumors. J Vet Intern Med 2(1):41–46

    Article  PubMed  CAS  Google Scholar 

  20. Hammer AS, Couto CG, Ayl RD, Shank KA (1994) Treatment of tumor-bearing dogs with actinomycin D. J Vet Intern Med 8(3):236–239

    Article  PubMed  CAS  Google Scholar 

  21. Ogilvie GK, Obradovich JE, Elmslie RE et al (1991) Efficacy of mitoxantrone against various neoplasms in dogs. J Am Vet Med Assoc 198(9):1618–1621

    PubMed  CAS  Google Scholar 

  22. Ogilvie GK, Reynolds HA, Richardson RC et al (1989) Phase II evaluation of doxorubicin for treatment of various canine neoplasms. J Am Vet Med Assoc 195(11):1580–1583

    PubMed  CAS  Google Scholar 

  23. Jeglum KAWA (1982) Chemotherapy of canine thyroid carcinoma. Compend Contin Educ Pract Vet 5:96–98

    Google Scholar 

  24. Bagley RS, Wheeler SJ, Klopp L et al (1998) Clinical features of trigeminal nerve-sheath tumor in 10 dogs. J Am Anim Hosp Assoc 34(1):19–25

    PubMed  CAS  Google Scholar 

  25. Levy MS, Kapatkin AS, Patnaik AK, Mauldin GN, Mauldin GE (1997) Spinal tumors in 37 dogs: clinical outcome and long-term survival (1987–1994). J Am Anim Hosp Assoc 33(4):307–312

    PubMed  CAS  Google Scholar 

  26. Kuwamura M, Yamate J, Kotani T, Takeuchi T, Sakuma S (1998) Canine peripheral nerve sheath tumor with eosinophilic cytoplasmic globules. Vet Pathol 35(3):223–226

    Article  PubMed  CAS  Google Scholar 

  27. Chijiwa K, Uchida K, Tateyama S (2004) Immunohistochemical evaluation of canine peripheral nerve sheath tumors and other soft tissue sarcomas. Vet Pathol 41(4):307–318

    Article  PubMed  CAS  Google Scholar 

  28. Goldschmidt MH, Zoltowski C (1981) Anal sac gland adenocarcinoma in the dog: 14 cases. J Small Anim Pract 22(3):119–128

    Article  PubMed  CAS  Google Scholar 

  29. Bennett PF, DeNicola DB, Bonney P, Glickman NW, Knapp DW (2002) Canine anal sac adenocarcinomas: clinical presentation and response to therapy. J Vet Intern Med 16(1):100–104

    Article  PubMed  Google Scholar 

  30. Emms SG (2005) Anal sac tumours of the dog and their response to cytoreductive surgery and chemotherapy. Aust Vet J 83(6):340–343

    Article  PubMed  CAS  Google Scholar 

  31. Hobson HP, Brown MR, Rogers KS (2006) Surgery of metastatic anal sac adenocarcinoma in five dogs. Vet Surg 35(3):267–270

    Article  PubMed  Google Scholar 

  32. Williams LE, Gliatto JM, Dodge RK et al (2003) Carcinoma of the apocrine glands of the anal sac in dogs: 113 cases (1985–1995). J Am Vet Med Assoc 223(6):825–831

    Article  PubMed  Google Scholar 

  33. Ross J, Scavelli T, Mathiesen D, Patnaik A (1991) Adenocarcinoma of the apocrine glands of the anal sac in dogs: a review of 32 cases. J Am Anim Hosp Assoc 27:349–355

    Google Scholar 

  34. Brearly M, Freeman J (1999) Anal sac adenocarcinoma in dogs: a review of 16 cases. Proceedings of the Veterinary Cancer Society 39

  35. Turek M, Forrest L, Adams WM, Helfand S, Vail DM (2003) Postoperative radiotherapy and mitoxantrone for anal sac adenocarcinoma in the dog: 15 cases (1991–2001). Veterinary and Comparative Oncology 1(2):94–104

    Article  PubMed  CAS  Google Scholar 

  36. Tomlinson J (1996) Surgical conditions of the cervical spine. Semin Vet Med Surg (Small Anim) 11(4):225–234

    CAS  Google Scholar 

  37. Levy MS, Kapatkin AS, Patnaik AK, Mauldin GN, Mauldin GE (1997) Spinal tumors in 37 dogs: clinical outcome and long-term survival (1987–1994). J Am Anim Hosp Assoc 33(4):307–312

    PubMed  CAS  Google Scholar 

  38. Fingeroth JM, Prata RG, Patnaik AK (1987) Spinal meningiomas in dogs: 13 cases (1972–1987). J Am Vet Med Assoc 191(6):720–726

    PubMed  CAS  Google Scholar 

  39. Zaki FA, Prata RG, Hurvitz AI, Kay WJ (1975) Primary tumors of the spinal cord and meninges in six dogs. J Am Vet Med Assoc 166(5):511–517

    PubMed  CAS  Google Scholar 

  40. Hahn KA, Bravo L, Adams WH, Frazier DL (1994) Naturally occurring tumors in dogs as comparative models for cancer therapy research. In Vivo 8(1):133–143

    PubMed  CAS  Google Scholar 

  41. Porrello A, Cardelli P, Spugnini EP (2004) Pet models in cancer research: general principles. J Exp Clin Cancer Res 23(2):181–193

    PubMed  CAS  Google Scholar 

  42. Hansen K, Khanna C (2004) Spontaneous and genetically engineered animal models; use in preclinical cancer drug development. Eur J Cancer 40(6):858–880

    Article  PubMed  CAS  Google Scholar 

  43. Vail DM, MacEwen EG (2000) Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest 18(8):781–792

    Article  PubMed  CAS  Google Scholar 

  44. Starkey MP, Scase TJ, Mellersh CS, Murphy S (2005) Dogs really are man's best friend--canine genomics has applications in veterinary and human medicine!. Brief Funct Genomic Proteomic 4(2):112–128

    Article  PubMed  CAS  Google Scholar 

  45. Porrello A, Cardelli P, Spugnini EP (2006) Oncology of companion animals as a model for humans. an overview of tumor histotypes. J Exp Clin Cancer Res 25(1):97–105

    PubMed  CAS  Google Scholar 

  46. Mack GS (2006) Clinical trials going to the dogs: canine program to study tumor treatment, biology. J Natl Cancer Inst 98(3):161–162

    Article  PubMed  Google Scholar 

  47. Mack GS (2005) Cancer researchers usher in dog days of medicine. Nat Med 11(10):1018

    PubMed  Google Scholar 

Download references

Statement of Translational Relevance

Currently, the NCI’s Comparative Oncology Program (COP) is evaluating the anti-tumor efficacy of chemotherapeutic agents in dogs with spontaneous occurring tumors. The impetus for this program stemmed from the high discordance of chemotherapeutic agent response rates observed in xenograft studies to the frequently low rates observed with the same agent in clinical studies. Our work is innovative because it involves the use of “biological Trojan horse technology” to target cancer. Since the 1950’s researchers have tried in vain to synthesize cobalamin analogs as anti-tumor agents, utilizing the vitamin B12 receptor (transcobalamin II receptor, TC II-R) or methionine synthase as a target. We synthesized a vitamin B12 based compound that delivers nitric oxide to cells. We have demonstrated previously that cancer cells which overexpress the vitamin B12 receptor (TCII-R) are very sensitive to nitrosylcobalamin (NO-Cbl). Our case studies demonstrate anti-tumor efficacy with limited toxicity to normal tissues. NO-Cbl sensitizes multidrug-resistant cancer cells to the antitumor effects of several different cytotoxic drugs and may therefore be valuable when utilized in combination regimens.

Acknowledgments

Special thanks to Dr. Christine R. Anderson (Angell Animal Medical Center, Boston, MA) for her care and monitoring of the Bichon Frise. Special thanks to Dr. Steven Scott (Akron-Peninsula Veterinary Office, Akron, OH) for his care and monitoring of the Golden Retriever. We also thank Dr. Jean M. Poulson (Tufts University School of Veterinary Medicine, North Grafton, MA) for her assistance with the imaging studies for the Bichon Frise. A very special thanks to Kim Darusz (PetsDx) for freely giving her time, energy, enthusiasm and continued support of our program. Financial Support: This work was supported by gifts from Crandall B. and Beverly Huckins, the Reuter Foundation, Valley Save-a-Pet and PetsDx to J.A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Bauer.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10637-011-9664-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, J.A., Frye, G., Bahr, A. et al. Anti-tumor effects of nitrosylcobalamin against spontaneous tumors in dogs. Invest New Drugs 28, 694–702 (2010). https://doi.org/10.1007/s10637-009-9282-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9282-0

Keywords

Navigation