Skip to main content
Log in

Construction of relative difference sets and Hadamard groups

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

‘There exist normal \((2m,2,2m,m)\) relative difference sets and thus Hadamard groups of order \(4m\) for all \(m\) of the form

$$\begin{aligned} m= x2^{a+t+u+w+\delta -\epsilon +1}6^b 9^c 10^d 22^e 26^f \prod _{i=1}^s p_i^{4a_i} \prod _{i=1}^t q_i^2 \prod _{i=1}^u \left( (r_i+1)/2)r_i^{v_i}\right) \prod _{i=1}^w s_i \end{aligned}$$

under the following conditions: \(a,b,c,d,e,f,s,t,u,w\) are nonnegative integers, \(a_1,\ldots ,a_r\) and \(v_1,\ldots ,v_u\) are positive integers, \(p_1,\ldots ,p_s\) are odd primes, \(q_1,\ldots ,q_t\) and \(r_1,\ldots ,r_u\) are prime powers with \(q_i\equiv 1\ (\mathrm{mod}\ 4)\) and \(r_i\equiv 1\ (\mathrm{mod}\ 4)\) for all \(i, s_1,\ldots ,s_w\) are integers with \(1\le s_i \le 33\) or \(s_i\in \{39,43\}\) for all \(i, x\) is a positive integer such that \(2x-1\) or \(4x-1\) is a prime power. Moreover, \(\delta =1\) if \(x>1\) and \(c+s>0, \delta =0\) otherwise, \(\epsilon =1\) if \(x=1, c+s=0\), and \(t+u+w>0, \epsilon =0\) otherwise. We also obtain some necessary conditions for the existence of \((2m,2,2m,m)\) relative difference sets in partial semidirect products of \(\mathbb{Z }_4\) with abelian groups, and provide a table cases for which \(m\le 100\) and the existence of such relative difference sets is open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arasu K.T., Chen Y.Q., Pott A.: Hadamard and conference matrices. J. Algebraic Comb. 14, 103–117 (2001).

    Google Scholar 

  2. Baumert L.D., Hall M.: Hadamard matrices of the Williamson type. Math. Comp. 19, 442–447 (1965).

    Google Scholar 

  3. Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999).

  4. Borevich Z.I., Shafarevich I.R.: Number Theory. Academic Press, New York (1966).

  5. Craigen R., Holzmann W., Kharaghani H.: Complex Golay sequences: structure and applications. Discret. Math. 252, 73–89 (2002).

    Google Scholar 

  6. Davis J.A., Jedwab J.: A survey of Hadamard difference sets. In: Arasu K.T., et al. (eds.) Groups, Difference Sets and the Monster, pp. 145–156. de Gruyter, Berlin (1996).

  7. Davis J.A., Jedwab J.: A unifying construction of difference sets. J. Comb. Theory Ser. A 80, 13–78 (1997).

    Google Scholar 

  8. de Launey W.: On the asymptotic existence of Hadamard matrices. J. Comb. Theory Ser. A 116, 1002–1008 (2009).

    Google Scholar 

  9. de Launey W., Smith W.M.J.: Cocyclic orthogonal designs and the asymptotic existence of cocyclic Hadamard matrices and maximal size relative difference sets with forbidden subgroup of size 2. J. Comb. Theory Ser. A 93, 37–92 (2001).

    Google Scholar 

  10. Dokovic D.Z.: Williamson matrices of order \(4n\) for \(n=33,35,39\). Discret. Math. 115, 267–271 (1993).

  11. Eliahou S., Kervaire M., Saffari B.: A new restriction on the length of Golay complementary sequences. J. Comb. Theory Ser. A 55, 49–59 (1990).

    Google Scholar 

  12. Gorenstein D.: Finite Groups, 2nd edn. Chelsea Publishing Co., New York (1980).

  13. Flannery D.L.: Cocyclic Hadamard matrices and Hadamard groups are equivalent. J. Algebra 192, 749–779 (1997).

    Google Scholar 

  14. Holzmann W.H., Kharaghani H., Tayfeh-Rezaie B.: Williamson matrices up to order 59. Des. Codes Cryptogr. 46, 343–352 (2008).

    Google Scholar 

  15. Ito N.: On Hadamard groups. J. Algebra 168, 981–987 (1994).

    Google Scholar 

  16. Ito N.: On Hadamard groups. II. J. Algebra 169, 936–942 (1994).

    Google Scholar 

  17. Ito N.: Some remarks on Hadamard groups. In: Groups-Korea 94, pp. 149–155. de Gruyter, Berlin (1995).

  18. Ito N.: On Hadamard groups, II. Rep. Fac. Sci. Technol. Meijo Univ. 37, 1–7 (1997).

    Google Scholar 

  19. Jungnickel D.: On automorphism groups of divisible designs. Can. J. Math. 34, 257–297 (1982).

    Google Scholar 

  20. Lal S., McFarland R.L., Odoni R.W.K.: On \(|\alpha |^2+|\beta |^2=p^t\) in certain cyclotomic fields. In: Number Theory and Algebra, pp. 195–197. Academic Press, New York (1977).

  21. Ma S.L.: Polynomial addition sets. Ph.D. thesis, University of Hong Kong, Hong Kong (1985).

  22. Pott A.: A survey on relative difference set. In: Arasu K.T., et al. (eds.) Groups, Difference Sets and the Monster, pp. 195–232. de Gruyter, Berlin (1996).

  23. Schmidt B.: Williamson matrices and a conjecture of Ito’s. Des. Codes Cryptogr. 17, 61–68 (1999).

    Google Scholar 

  24. Spence E.: An infinite family of Williamson matrices. J. Aust. Math. Soc. 24, 252–256 (1977).

    Google Scholar 

  25. Turyn R.J.: An infinite class of Williamson matrices. J. Comb. Theory Ser. A 12, 319–321 (1972).

    Google Scholar 

  26. Whiteman A.L.: An infinite family of Hadamard matrices of Williamson type. J. Comb. Theory Ser. A 14, 334–340 (1973).

    Google Scholar 

Download references

Acknowledgments

We thank the referees for the careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schmidt.

Additional information

Communicated by K. T. Arasu.

Appendix

Appendix

The following table presents all abelian groups of order divisible by 4, up to 400, which do not admit Golay transversals or for which the existence of such transversals is open. In the case of nonexistence, a reference to the proof is provided. Groups that admit Golay transversals by Theorems 6.1 and 6.2 are not listed.

Order

Group

Exist?

12

(2)(2)(3)

Lem 7.3

24

(2)(2)(2)(3)

Lem 7.3

28

(2)(2)(7)

Lem 7.3

36

(2)(2)(9)

Lem 7.3

44

(2)(2)(11)

Lem 7.3

48

(2)(2)(2)(2)(3)

Lem 7.3

56

(2)(2)(2)(7)

Lem 7.3

60

(2)(2)(3)(5)

Lem 7.2

68

(2)(2)(17)

?

72

(2)(2)(2)(9)

Lem 7.3

76

(2)(2)(19)

Lem 7.3

84

(2)(2)(3)(7)

Lem 7.2

88

(2)(2)(2)(11)

Lem 7.3

92

(2)(2)(23)

Lem 7.3

96

(2)(2)(2)(2)(2)(3)

Lem 7.3

100

(2)(2)(25)

?

100

(2)(2)(5)(5)

?

108

(2)(2)(27)

Lem 7.3

108

(3)(4)(9)

?

108

(2)(2)(3)(9)

Lem 7.3

108

(3)(3)(3)(4)

?

108

(2)(2)(3)(3)(3)

Lem 7.2

112

(2)(2)(2)(2)(7)

Lem 7.3

116

(2)(2)(29)

?

120

(2)(2)(2)(3)(5)

Lem 7.2

124

(2)(2)(31)

Lem 7.3

132

(2)(2)(3)(11)

Lem 7.2

136

(2)(2)(2)(17)

?

140

(2)(2)(5)(7)

Lem 7.2

144

(2)(2)(2)(2)(9)

Lem 7.3

148

(2)(2)(37)

?

152

(2)(2)(2)(19)

Lem 7.3

156

(2)(2)(3)(13)

Lem 7.2

Order

Group

Exist?

164

(2)(2)(41)

?

168

(2)(2)(2)(3)(7)

Lem 7.2

172

(2)(2)(43)

Lem 7.3

176

(2)(2)(2)(2)(11)

Lem 7.3

180

(2)(2)(5)(9)

?

180

(2)(2)(3)(3)(5)

?

184

(2)(2)(2)(23)

Lem 7.3

188

(4)(47)

?

188

(2)(2)(47)

Lem 7.3

192

(2)(2)(2)(2)(2)(2)(3)

Lem 7.3

196

(2)(2)(49)

Cor 3.7

196

(4)(7)(7)

?

196

(2)(2)(7)(7)

Cor 6.3

204

(2)(2)(3)(17)

Lem 7.2

212

(2)(2)(53)

?

216

(2)(2)(2)(27)

Lem 7.3

216

(2)(2)(2)(3)(9)

Lem 7.3

216

(2)(2)(2)(3)(3)(3)

Lem 7.2

220

(2)(2)(5)(11)

Lem 7.2

224

(2)(2)(2)(2)(2)(7)

Lem 7.3

228

(2)(2)(3)(19)

Lem 7.2

232

(2)(2)(2)(29)

?

236

(4)(59)

?

236

(2)(2)(59)

Lem 7.3

240

(2)(2)(2)(2)(3)(5)

Lem 7.2

244

(2)(2)(61)

?

248

(2)(2)(2)(31)

Lem 7.3

252

(2)(2)(7)(9)

Lem 7.2

252

(3)(3)(4)(7)

?

252

(2)(2)(3)(3)(7)

Lem 7.2

260

(4)(5)(13)

?

260

(2)(2)(5)(13)

?

264

(2)(2)(2)(3)(11)

Lem 7.2

268

(4)(67)

?

268

(2)(2)(67)

Lem 7.3

272

(2)(2)(2)(2)(17)

?

276

(2)(2)(3)(23)

Lem 7.2

280

(2)(2)(2)(5)(7)

Lem 7.2

284

(2)(2)(71)

Lem 7.3

288

(2)(2)(2)(2)(2)(9)

Lem 7.3

292

(4)(73)

?

292

(2)(2)(73)

?

Order

Group

Exist?

296

(2)(2)(2)(37)

?

300

(2)(2)(3)(25)

Lem 7.2

300

(2)(2)(3)(5)(5)

Lem 7.2

304

(2)(2)(2)(2)(19)

Lem 7.3

308

(2)(2)(7)(11)

Lem 7.2

312

(2)(2)(2)(3)(13)

Lem 7.2

316

(2)(2)(79)

Lem 7.3

324

(4)(81)

?

324

(2)(2)(81)

Lem 7.3

324

(3)(4)(27)

?

324

(2)(2)(3)(27)

Lem 7.3

324

(3)(3)(4)(9)

?

324

(2)(2)(3)(3)(9)

Cor 7.5

328

(2)(2)(2)(41)

?

332

(2)(2)(83)

Lem 7.3

336

(2)(2)(2)(2)(3)(7)

Lem 7.2

340

(2)(2)(5)(17)

?

344

(2)(2)(2)(43)

Lem 7.3

348

(2)(2)(3)(29)

Lem 7.2

352

(2)(2)(2)(2)(2)(11)

Lem 7.3

356

(4)(89)

?

356

(2)(2)(89)

?

360

(2)(2)(2)(5)(9)

?

364

(2)(2)(7)(13)

Lem 7.2

368

(2)(2)(2)(2)(23)

Lem 7.3

372

(3)(4)(31)

?

372

(2)(2)(3)(31)

Lem 7.2

376

(8)(47)

?

376

(2)(4)(47)

?

376

(2)(2)(2)(47)

Lem 7.3

380

(2)(2)(5)(19)

Lem 7.2

384

(2)(2)(2)(2)(2)(2)(2)(3)

Lem 7.3

388

(2)(2)(97)

?

392

(2)(2)(2)(49)

Lem 7.3

392

(7)(7)(8)

?

392

(2)(2)(2)(7)(7)

?

396

(2)(2)(9)(11)

Lem 7.2

396

(3)(3)(4)(11)

?

396

(2)(2)(3)(3)(11)

Lem 7.2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, B., Tan, M.M. Construction of relative difference sets and Hadamard groups. Des. Codes Cryptogr. 73, 105–119 (2014). https://doi.org/10.1007/s10623-013-9811-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9811-x

Keywords

Mathematics Subject Classification

Navigation