Skip to main content
Log in

Probucol Ameliorates the Development of Nonalcoholic Steatohepatitis in Rats Fed High-Fat Diets

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Aims

We sought to evaluate the effects of probucol on steatohepatitis and associated molecular mechanisms in a rat model of nonalcoholic steatohepatitis (NASH) induced by high-fat diet (HFD).

Methods

Forty male rats weighing 100–120 g were randomly assigned to the following treatments (n = 10 for each treatment): standard diet + normal saline (NC group), standard diet + 500 mg/kg/day probucol (NP group), HFD + normal saline (HD group), and HFD + 500 mg/kg/day probucol (HP group). All animals received the above treatments for 15 weeks. Lipid metabolism and steatohepatitis were assessed. Systemic insulin resistance, oxidative stress status, serum tumor necrosis factor-alpha (TNF-α) and adiponectin levels, and gene expression were examined.

Results

High-fat feeding resulted in macrovesicular steatosis, lobular inflammation, and hepatocellular ballooning degeneration in the liver, coupled with increased concentrations of serum aspartate aminotransferase and alanine aminotransferase. Probucol exposure attenuated the biochemical and histological changes comparable with NASH. Moreover, probucol treatment significantly prevented the elevations of serum total cholesterol, low-density lipoprotein, and high-density lipoprotein and the increase in the expression of numerous lipid metabolism-related genes in HFD-fed rats. There were increased insulin sensitivity and serum adiponectin levels and enhanced hepatic AMP-activated protein kinase phosphorylation in the HP group. Probucol lessened the HFD-induced elevation of serum TNF-α and hepatic malondialdehyde and reduced antioxidant enzymatic activities.

Conclusions

Probucol shows beneficial effects on HFD-induced steatohepatitis by improving insulin resistance and attenuating oxidative stress and systemic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lewis JR, Mohanty SR. Nonalcoholic fatty liver disease: a review and update. Dig Dis Sci. 2010;55:560–578.

    Article  PubMed  Google Scholar 

  2. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010;5:145–171.

    Article  PubMed  CAS  Google Scholar 

  3. Brunt EM. Nonalcoholic steatohepatitis: definition and pathology. Semin Liver Dis. 2001;21:3–16.

    Article  PubMed  CAS  Google Scholar 

  4. Adams LA, Feldstein AE. Nonalcoholic steatohepatitis: risk factors and diagnosis. Expert Rev Gastroenterol Hepatol. 2010;4:623–635.

    Article  PubMed  Google Scholar 

  5. Williams CD, Stengel J, Asike MI, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011;140:124–131.

    Article  PubMed  Google Scholar 

  6. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–845.

    Article  PubMed  CAS  Google Scholar 

  7. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43:S99–S112.

    Article  PubMed  CAS  Google Scholar 

  8. Thounaojam MC, Jadeja RN, Ramani UV, Devkar RV, Ramachandran AV. Non-alcoholic steatohepatitis: an overview including treatments with herbals as alternative therapeutics. J Appl Biomed. 2012;10:119–136.

    Article  Google Scholar 

  9. Yimin FH, Matsuoka S, et al. A novel murine model for non-alcoholic steatohepatitis developed by combination of a high-fat diet and oxidized low-density lipoprotein. Lab Invest. 2012;92:265–281.

    Article  PubMed  CAS  Google Scholar 

  10. Van Wagner LB, Rinella ME. The role of insulin-sensitizing agents in the treatment of nonalcoholic steatohepatitis. Therap Adv Gastroenterol. 2011;4:249–263.

    Article  PubMed  Google Scholar 

  11. Musso G, Gambino R, Cassader M. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obes Rev. 2010;11:430–445.

    Article  PubMed  CAS  Google Scholar 

  12. Thounaojam MC, Jadeja RN, Dandekar DS, Devkar RV, Ramachandran AV. Sida rhomboidea. Roxb extract alleviates pathophysiological changes in experimental in vivo and in vitro models of high fat diet/fatty acid induced non-alcoholic steatohepatitis. Exp Toxicol Pathol. 2012;64:217–224.

    Article  PubMed  Google Scholar 

  13. Zhong JK, Guo ZG, Li C, Wang ZK, Lai WY, Tu Y. Probucol alleviates atherosclerosis and improves high density lipoprotein function. Lipids Health Dis. 2011;10:210.

    Article  PubMed  CAS  Google Scholar 

  14. Stocker R. Molecular mechanisms underlying the antiatherosclerotic and antidiabetic effects of probucol, succinobucol, and other probucol analogues. Curr Opin Lipidol. 2009;20:227–235.

    Article  PubMed  CAS  Google Scholar 

  15. Endo K, Miyashita Y, Sasaki H, et al. Probucol and atorvastatin decrease urinary 8-hydroxy-2′-deoxyguanosine in patients with diabetes and hypercholesterolemia. J Atheroscler Thromb. 2006;13:68–75.

    Article  PubMed  CAS  Google Scholar 

  16. Wu BJ, Kathir K, Witting PK, et al. Antioxidants protect from atherosclerosis by a heme oxygenase-1 pathway that is independent of free radical scavenging. J Exp Med. 2006;203:1117–1127.

    Article  PubMed  CAS  Google Scholar 

  17. Merat S, Malekzadeh R, Sohrabi MR, et al. Probucol in the treatment of nonalcoholic steatohepatitis: an open-labeled study. J Clin Gastroenterol. 2003;36:266–268.

    Article  PubMed  CAS  Google Scholar 

  18. Merat S, Aduli M, Kazemi R, et al. Liver histology changes in nonalcoholic steatohepatitis after one year of treatment with probucol. Dig Dis Sci. 2008;53:2246–2250.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang X, Li Z, Liu D, Xu X, Shen W, Mei Z. Effects of probucol on hepatic tumor necrosis factor-alpha, interleukin-6 and adiponectin receptor-2 expression in diabetic rats. J Gastroenterol Hepatol. 2009;24:1058–1063.

    Article  PubMed  CAS  Google Scholar 

  20. Xu ZJ, Fan JG, Ding XD, Qiao L, Wang GL. Characterization of high-fat, diet-induced, non-alcoholic steatohepatitis with fibrosis in rats. Dig Dis Sci. 2010;55:931–940.

    Article  PubMed  CAS  Google Scholar 

  21. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321.

    Article  PubMed  Google Scholar 

  22. Vogeser M, König D, Frey I, Predel HG, Parhofer KG, Berg A. Fasting serum insulin and the homeostasis model of insulin resistance (HOMA-IR) in the monitoring of lifestyle interventions in obese persons. Clin Biochem. 2007;40:964–968.

    Article  PubMed  CAS  Google Scholar 

  23. Almonacid-Urrego CC, Sánchez-Campos S, Tuñón MJ, González-Gallego J. Non-alcoholic steatohepatitis: what can we learn from animal models? Curr Med Chem. 2012;19:1389–1404.

    Article  PubMed  CAS  Google Scholar 

  24. Yalniz M, Bahçecioğlu IH, Kuzu N, et al. Amelioration of steatohepatitis with pentoxifylline in a novel nonalcoholic steatohepatitis model induced by high-fat diet. Dig Dis Sci. 2007;52:2380–2386.

    Article  PubMed  CAS  Google Scholar 

  25. Giboney PT. Mildly elevated liver transaminase levels in the asymptomatic patient. Am Fam Physician. 2005;71:1105–1110.

    PubMed  Google Scholar 

  26. Hayek T, Ito Y, Azrolan N, et al. Dietary fat increases high density lipoprotein (HDL) levels both by increasing the transport rates and decreasing the fractional catabolic rates of HDL cholesterol ester and apolipoprotein (Apo) A-I. Presentation of a new animal model and mechanistic studies in human Apo A-I transgenic and control mice. J Clin Invest. 1993;91:1665–1671.

    Article  PubMed  CAS  Google Scholar 

  27. Sawayama Y, Shimizu C, Maeda N, et al. Effects of probucol and pravastatin on common carotid atherosclerosis in patients with asymptomatic hypercholesterolemia. Fukuoka atherosclerosis trial (FAST). J Am Coll Cardiol. 2002;39:610–616.

    Article  PubMed  CAS  Google Scholar 

  28. Yamaguchi Y, Kitagawa S, Imaizumi N, Kunitomo M, Fujiwara M. Enhancement of aortic cholesterol deposition by dietary linoleic acid in cholesterol-fed mice: an animal model for primary screening of antiatherosclerotic agents. J Pharmacol Toxicol Methods. 1993;30:169–175.

    Article  PubMed  CAS  Google Scholar 

  29. Kesäniemi YA, Grundy SM. Influence of probucol on cholesterol and lipoprotein metabolism in man. J Lipid Res. 1984;25:780–790.

    PubMed  Google Scholar 

  30. Yokoyama S, Yamamoto A, Kurasawa T. A little more information about aggravation of probucol-induced HDL-reduction by clofibrate. Atherosclerosis. 1988;70:179–181.

    Article  PubMed  CAS  Google Scholar 

  31. Wu CA, Tsujita M, Hayashi M, Yokoyama S. Probucol inactivates ABCA1 in the plasma membrane with respect to its mediation of apolipoprotein binding and high density lipoprotein assembly and to its proteolytic degradation. J Biol Chem. 2004;279:30168–30174.

    Article  PubMed  CAS  Google Scholar 

  32. Tsompanidi EM, Brinkmeier MS, Fotiadou EH, Giakoumi SM, Kypreos KE. HDL biogenesis and functions: role of HDL quality and quantity in atherosclerosis. Atherosclerosis. 2010;208:3–9.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang SH, Reddick RL, Avdievich E, et al. Paradoxical enhancement of atherosclerosis by probucol treatment in apolipoprotein E-deficient mice. J Clin Invest. 1997;99:2858–2866.

    Article  PubMed  CAS  Google Scholar 

  34. Ducheix S, Lobaccaro JM, Martin PG, Guillou H. Liver X receptor: an oxysterol sensor and a major player in the control of lipogenesis. Chem Phys Lipids. 2011;164:500–514.

    Article  PubMed  CAS  Google Scholar 

  35. Stoeckman AK, Towle HC. The role of SREBP-1c in nutritional regulation of lipogenic enzyme gene expression. J Biol Chem. 2002;277:27029–27035.

    Article  PubMed  CAS  Google Scholar 

  36. Samuel VT, Liu ZX, Qu X, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279:32345–32353.

    Article  PubMed  CAS  Google Scholar 

  37. Ye JM, Iglesias MA, Watson DG, et al. PPARalpha/gamma ragaglitazar eliminates fatty liver and enhances insulin action in fat-fed rats in the absence of hepatomegaly. Am J Physiol Endocrinol Metab. 2003;284:E531–E540.

    PubMed  CAS  Google Scholar 

  38. Ziemke F, Mantzoros CS. Adiponectin in insulin resistance: lessons from translational research. Am J Clin Nutr. 2010;91:258S–261S.

    Article  PubMed  CAS  Google Scholar 

  39. Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112:91–100.

    PubMed  CAS  Google Scholar 

  40. Awazawa M, Ueki K, Inabe K, et al. Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway. Biochem Biophys Res Commun. 2009;382:51–56.

    Article  PubMed  CAS  Google Scholar 

  41. Muraoka T, Aoki K, Iwasaki T, et al. Ezetimibe decreases SREBP-1c expression in liver and reverses hepatic insulin resistance in mice fed a high-fat diet. Metabolism. 2011;60:617–628.

    Article  PubMed  CAS  Google Scholar 

  42. Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med. 2012;52:59–69.

    Article  PubMed  CAS  Google Scholar 

  43. Seki S, Kitada T, Yamada T, Sakaguchi H, Nakatani K, Wakasa K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J Hepatol. 2002;37:56–62.

    Article  PubMed  CAS  Google Scholar 

  44. Carmiel-Haggai M, Cederbaum AI, Nieto N. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J. 2005;19:136–138.

    PubMed  CAS  Google Scholar 

  45. Baumgardner JN, Shankar K, Hennings L, Badger TM, Ronis MJ. A new model for nonalcoholic steatohepatitis in the rat utilizing total enteral nutrition to overfeed a high-polyunsaturated fat diet. Am J Physiol Gastrointest Liver Physiol. 2008;294:G27–G38.

    Article  PubMed  CAS  Google Scholar 

  46. Wang Y, Ausman LM, Russell RM, Greenberg AS, Wang XD. Increased apoptosis in high-fat diet-induced nonalcoholic steatohepatitis in rats is associated with c-Jun NH2-terminal kinase activation and elevated proapoptotic Bax. J Nutr. 2008;138:1866–1871.

    PubMed  CAS  Google Scholar 

  47. Harmon RC, Tiniakos DG, Argo CK. Inflammation in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol. 2011;5:189–200.

    Article  PubMed  Google Scholar 

  48. Cortez-Pinto H, de Moura MC, Day CP. Non-alcoholic steatohepatitis: from cell biology to clinical practice. J Hepatol. 2006;44:197–208.

    Article  PubMed  CAS  Google Scholar 

  49. Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37:343–350.

    Article  PubMed  CAS  Google Scholar 

  50. Satapathy SK, Garg S, Chauhan R, et al. Beneficial effects of tumor necrosis factor-alpha inhibition by pentoxifylline on clinical, biochemical, and metabolic parameters of patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2004;99:1946–1952.

    Article  PubMed  CAS  Google Scholar 

  51. Kaul N, Siveski-Iliskovic N, Thomas TP, Hill M, Khaper N, Singal PK. Probucol improves antioxidant activity and modulates development of diabetic cardiomyopathy. Nutrition. 1995;11:551–554.

    PubMed  CAS  Google Scholar 

  52. Li XN, Song J, Zhang L, et al. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes. 2009;58:2246–2257.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Chongqing of China (CSTC, 2010BB5105).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-ling Wu or Xia Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, R., Zhang, W., Liu, B. et al. Probucol Ameliorates the Development of Nonalcoholic Steatohepatitis in Rats Fed High-Fat Diets. Dig Dis Sci 58, 163–171 (2013). https://doi.org/10.1007/s10620-012-2335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2335-9

Keywords

Navigation