Skip to main content
Log in

MassExodus: modeling evolving networks in harsh environments

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

Consider networks in harsh environments, where nodes may be lost due to failure, attack, or infection—how is the topology affected by such events? Can we mimic and measure the effect? We propose a new generative model of network evolution in dynamic and harsh environments. Our model can reproduce the range of topologies observed across known robust and fragile biological networks, as well as several additional transport, communication, and social networks. We also develop a new optimization measure to evaluate robustness based on preserving high connectivity following random or adversarial bursty node loss. Using this measure, we evaluate the robustness of several real-world networks and propose a new distributed algorithm to construct secure networks operating within malicious environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acemoglu D, Ozdaglar A, Tahbaz-Salehi A (2013) Systemic risk and stability in financial networks. NBER Working Papers 18727, National Bureau of Economic Research Inc. http://ideas.repec.org/p/nbr/nberwo/18727.html

  • Akoglu L, Faloutsos C (2009) Rtg: a recursive realistic graph generator using random typing. Data Min Knowl Discov 19(2):194–209. doi:10.1007/s10618-009-0140-7

    Article  MathSciNet  Google Scholar 

  • Albert R (2007) Network inference, analysis, and modeling in systems biology. Plant Cell 19(11):3327–3338

    Article  Google Scholar 

  • Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382

    Article  Google Scholar 

  • Albert R, Albert I, Nakarado GL (2004) Structural vulnerability of the North American power grid. Phys Rev E Stat Nonlinear Soft Matter Phys 69(2 Pt 2):025,103

    Article  Google Scholar 

  • Alippi C, Galperti C (2008) An adaptive system for optimal solar energy harvesting in wireless sensor network nodes. IEEE Trans Circuits Syst I 55(6):1742–1750. doi:10.1109/TCSI.2008.922023

    Article  MathSciNet  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29

    Article  Google Scholar 

  • Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  Google Scholar 

  • Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A, Wiener J (2000) Graph structure in the web. In: Proceedings of the 9th international world wide web conference on computer networks: the international journal of computer and telecommunications netowrking, North-Holland Publishing Co., Amsterdam, The Netherlands, The Netherlands, pp 309–320. http://dl.acm.org/citation.cfm?id=347319.346290

  • Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of failures in interdependent networks. Nature 464(7291):1025–1028

    Article  Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349

    Google Scholar 

  • Carle J, Simplot-Ryl D (2004) Energy-efficient area monitoring for sensor networks. Computer 37(2):40–46

    Article  Google Scholar 

  • Chakrabarti D, Faloutsos C (2012) Graph mining: laws, tools, and case studies. Synthesis lectures on data mining and knowledge discovery. Morgan & Claypool Publishers, San Rafael, CA

  • Chan H, Akoglu L, Tong H (2014) Make it or break it: manipulating robustness in large netwotks. In: SIAM International conference on data mining (SDM)

  • Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O’Donnell L, Reguly T, Breitkreutz A, Sellam A, Chen D, Chang C, Rust J, Livstone M, Oughtred R, Dolinski K, Tyers M (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41(Database issue):D816–D823

  • Cho A (2013) Computer science. Network science at center of surveillance dispute. Science 340(6138):1272

    Article  Google Scholar 

  • Chung F, Lu L, Vu V (2003) Eigenvalues of random power law graphs. Ann Comb 7:21–33

    Article  MathSciNet  MATH  Google Scholar 

  • De Domenico M, Sole-Ribalta A, Gomez S, Arenas A (2014) Navigability of interconnected networks under random failures. Proc Natl Acad Sci USA 111(23):8351–8356

    Article  MathSciNet  Google Scholar 

  • Easley D, Kleinberg J (2010) Networks, crowds, and markets: reasoning about a highly connected world. Cambridge University Press, New York, NY

    Book  Google Scholar 

  • Fabrikant A, Luthra A, Maneva E, Papadimitriou CH, Shenker S (2003) On a network creation game. In: Proceedings of the twenty-second annual symposium on principles of distributed computing, ACM, New York, NY, PODC ’03, pp 347–351. doi:10.1145/872035.872088

  • Fredi Z, Komls J (1981) The eigenvalues of random symmetric matrices. Combinatorica 1(3):233–241. doi:10.1007/BF02579329

    Article  MathSciNet  Google Scholar 

  • Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D’Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185(19):5673–5684

    Article  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–391

    Article  Google Scholar 

  • Gidalevitz T, Prahlad V, Morimoto RI (2011) The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a009704

  • Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421(6918):63–66

    Article  Google Scholar 

  • Guell O, Sagues F, Serrano MA (2012) Predicting effects of structural stress in a genome-reduced model bacterial metabolism. Sci Rep 2:621

    Article  Google Scholar 

  • Haldane AG, May RM (2011) Systemic risk in banking ecosystems. Nature 469(7330):351–355

    Article  Google Scholar 

  • Helbing D (2013) Globally networked risks and how to respond. Nature 497(7447):51–59

    Article  Google Scholar 

  • Ispolatov I, Yuryev A, Mazo I, Maslov S (2005) Binding properties and evolution of homodimers in protein–protein interaction networks. Nucleic Acids Res 33(11):3629–3635

    Article  Google Scholar 

  • Jin EM, Girvan M, Newman MEJ (2001) Structure of growing social networks. Phys Rev E 64(046):132. doi:10.1103/PhysRevE.64.046132

    Google Scholar 

  • Kitano H (2004) Biological robustness. Nat Rev Genet 5(11):826–837

    Article  Google Scholar 

  • Kitano H, Oda K (2006) Robustness trade-offs and host-microbial symbiosis in the immune system. Mol Syst Biol 2(2006):0022

    Google Scholar 

  • Kleinberg JM, Kumar R, Raghavan P, Rajagopalan S, Tomkins AS (1999) The web as a graph: measurements, models, and methods. In: Proceedings of the 5th annual international conference on computing and combinatorics, Springer, Berlin, COCOON’99, pp 1–17. http://dl.acm.org/citation.cfm?id=1765751.1765753

  • Krebs V (2002) Mapping networks of terrorist cells. CONNECTIONS 24(3):43–52

    Google Scholar 

  • Leskovec J, Chakrabarti D, Kleinberg J, Faloutsos C (2005a) Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. In: Proceedings of the 9th European conference on principles and practice of knowledge discovery in databases, Springer, Berlin, PKDD’05, pp 133–145. doi:10.1007/11564126_17

  • Leskovec J, Kleinberg J, Faloutsos C (2005b) Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th international conference on knowledge discovery and data mining, pp 177–187. doi:10.1145/1081870.1081893

  • Leskovec J, Backstrom L, Kumar R, Tomkins A (2008) Microscopic evolution of social networks. In: Proceedings of the 14th international conference on knowledge discovery and data mining, pp 462–470. doi:10.1145/1401890.1401948

  • Louf R, Jensen P, Barthelemy M (2013) Emergence of hierarchy in cost-driven growth of spatial networks. Proc Natl Acad Sci USA 110(22):8824–8829

    Article  MathSciNet  MATH  Google Scholar 

  • MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinf 7:113

    Article  Google Scholar 

  • Middendorf M, Ziv E, Wiggins CH (2005) Inferring network mechanisms: the Drosophila melanogaster protein interaction network. Proc Natl Acad Sci USA 102(9):3192–3197

    Article  Google Scholar 

  • Moore D, Shannon C, Brown J (2002) Code-Red: a case study on the spread and victims of an Internet worm. SIGCOMM/USENIX Internet Measurement Workshop. Marseille, France, pp 273–284

  • Moore D, Shannon C, Voelker G, Savage S (2003) Internet quarantine: requirements for containing self-propagating code. In: Proc. of the IEEE Intl. Conf. on Computer and Communications, vol 3, pp 1901–1910 vol. 3, doi:10.1109/INFCOM.2003.1209212

  • Navlakha S, Kingsford C (2011) Network archaeology: uncovering ancient networks from present-day interactions. PLoS Comput Biol 7(4):e1001,119

    Article  MathSciNet  Google Scholar 

  • Navlakha S, He X, Faloutsos C, Bar-Joseph Z (2014) Topological properties of robust biological and computational networks. J R Soc Interface 11(96):20140,283

    Article  Google Scholar 

  • Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441(7095):840–846

    Article  Google Scholar 

  • Pereira-Leal JB, Levy ED, Kamp C, Teichmann SA (2007) Evolution of protein complexes by duplication of homomeric interactions. Genome Biol 8(4):R51

    Article  Google Scholar 

  • Prakash B, Tong H, Valler N, Faloutsos M, Faloutsos C (2010) Virus propagation on time-varying networks: theory and immunization algorithms. In: Proceedings of the European conference on machine learning and knowledge discovery in databases, Springer, Berlin, pp 99–114. http://dl.acm.org/citation.cfm?id=1889788.1889796

  • Schneider CM, Moreira AA, Andrade JS, Havlin S, Herrmann HJ (2011) Mitigation of malicious attacks on networks. Proc Natl Acad Sci USA 108(10):3838–3841

    Article  Google Scholar 

  • Siganos G, Tauro SL, Faloutsos M (2006) Jellyfish: a conceptual model for the as internet topology. J Commun Netw 8(3):339–350. doi:10.1109/JCN.2006.6182774

    Article  Google Scholar 

  • Sole RV, Rosas-Casals M, Corominas-Murtra B, Valverde S (2008) Robustness of the European power grids under intentional attack. Phys Rev E Stat Nonlinear Soft Matter Phys 77(2 Pt 2):026,102

    Article  Google Scholar 

  • Valencia A, Pazos F (2003) Prediction of protein–protein interactions from evolutionary information. Methods Biochem Anal 44:411–426

    Google Scholar 

  • Vazquez A, Flammini A, Maritan A, Vespignani A (2003) Modeling of protein interaction networks. Complexus 1(1):38–44

    Article  Google Scholar 

  • Wu S, Das Sarma A, Fabrikant A, Lattanzi S, Tomkins A (2013) Arrival and departure dynamics in social networks. In: Proceedings of the sixth ACM international conference on web search and data mining, ACM, New York, NY, WSDM ’13, pp 233–242. doi:10.1145/2433396.2433425

Download references

Acknowledgments

This material is based upon work supported by the National Institutes of Health award no. F32-MH099784 to S.N; by the National Science Foundation under Grant No. IIS-1217559, by the Army Research Laboratory under Cooperative Agreement Number W911NF-09-2-0053, and by a Google Focused Research Award to C.F; and by grants from the McDonnell Foundation programme on Studying Complex Systems and from the US National Science Foundation award nos. DBI-0965316 and DBI-1356505 to Z.B.-J. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, or other funding parties. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saket Navlakha.

Additional information

Responsible editor: Joao Gama, Indre Zliobaite and Alipio Jorge.

S. Navlakha’s study began during a post-doc at Carnegie Mellon University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navlakha, S., Faloutsos, C. & Bar-Joseph, Z. MassExodus: modeling evolving networks in harsh environments. Data Min Knowl Disc 29, 1211–1232 (2015). https://doi.org/10.1007/s10618-014-0399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-014-0399-1

Keywords

Navigation