Skip to main content
Log in

GPU-accelerated 3D reconstruction of porous media using multiple-point statistics

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

It is very important for the study of predicting fluid transport properties or mechanisms of fluid flow in porous media that the characteristics of porous media can be extracted in relatively smaller scales and then are copied in a larger or even arbitrary region to reconstruct virtual 3D porous media that have similar structures with the real porous media. One of multiple-point statistics (MPS) method, the single normal equation simulation algorithm (SNESIM), has been widely used in reconstructing 3D porous media recently. However, owing to its large CPU cost and rigid memory demand, the application of SNESIM has been limited in some cases. To overcome this disadvantage, parallelization of SNESIM is performed on the compute unified device architecture (CUDA) kernels in the graphic processing unit (GPU) to reconstruct each node on simulation grids, combined with choosing the optimal size of data templates based on the entropy calculation towards the training image (TI) to acquire high-quality reconstruction with a low CPU cost; meanwhile, the integration of hard data and soft data is also included in the processing of CUDA kernels to improve the accuracy. Representative elementary volumes (REVs) for porosity, variogram, and entropy are analyzed to guarantee that the scale of observation is large enough and parameters of concern are constant. This parallel GPU-version 3D porous media reconstruction only requires relatively small size memory and benefits from the tremendous calculating power given by CUDA kernels to shorten the CPU time, showing its high efficiency for the reconstruction of porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong, H.: Micro-CT Imaging and Pore Network Extraction. Ph.D. Thesis. Imperial College London, London (2007)

  2. Okabe, H., Blunt, M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E 70(066135), 1–10 (2004)

    Google Scholar 

  3. Okabe, H., Blunt, M.J.: Pore space reconstruction using multiple-point statistics. J. Pet. Sci. Eng. 46, 121–137 (2005)

    Article  Google Scholar 

  4. Tartakovsky, A.M.: Lagrangian simulations of unstable gravity-driven flow of fluids with variable density in randomly heterogeneous porous media. Stoch. Env. Res. Risk A 24(7), 993–1002 (2010)

    Article  Google Scholar 

  5. Hsu, K.C., Chen, K.C.: Multiscale flow and transport model in three-dimensional fractal porous media. Stoch. Env. Res. Risk A. 24(7), 1053–1065 (2010)

    Article  Google Scholar 

  6. Fatt, I.: The network model of porous media I. capillary pressure characteristics. Trans. AIME 207, 144–159 (1956)

    Google Scholar 

  7. Blunt, M., King, P.: Macroscopic parameters from simulations of pore scale flow. Phys. Rev. A 42, 4780–4787 (1990)

    Article  Google Scholar 

  8. Blunt, M., King, P.: Relative permeability from two- and three-dimensional pore-scale modeling. Transp. Porous Media 6, 407–433 (1991)

    Google Scholar 

  9. Bryant, S.L., King, P.R., Mellor, D.W.: Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp Porous Media. 11, 53–70 (1993)

    Article  Google Scholar 

  10. Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Article  Google Scholar 

  11. Flannery, B.P., Deckman, H.W., Roberge, W.G., Damico, K.L.: Three-dimensional X-ray microtomography. Sci. 237, 1439–1444 (1987)

    Article  Google Scholar 

  12. Bryant, S., Blunt, M.: Prediction of relative permeability in simple porous-media. Phys. Rev. A 46, 2004–2011 (1992)

    Article  Google Scholar 

  13. Quiblier, J.A.: A new three-dimensional modeling technique for studying porous-media. J Colloid Interface Sci. 98, 84–102 (1984)

    Article  Google Scholar 

  14. Guardiano, F., Srivastava, R.M. In: Soares A. (ed.): Multivariate geostatistics: Beyond bivariate moments. Geostatistics-Troia, Vol. 1, pp 133–144. Kluwer, Dordrecht (1993)

  15. Comunian, A., Renard, P., Straubhaar, J.: 3D multiple-point statistics simulation using 2D training images. Comput. Geosci. 40, 49–65 (2012)

    Article  Google Scholar 

  16. Hajizadeh, A., Safekordi, A., Farhadpour, F.A.: A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images. Adv. Water Resour. 34, 1256–1267 (2011)

    Article  Google Scholar 

  17. Strebelle, S.B.: Sequential Simulation drawing structures from training images Ph.D. Thesis. Stanford University, Stanford CA (2000)

  18. Strebelle, S.B.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34(1), 1–21 (2002)

    Article  Google Scholar 

  19. Xu, Z., Teng, Q.Z., He, X.H., Yang, Y.M., Li, Z.J.: Multiple-point statistics method based on array structure for 3D reconstruction of Fontainebleau sandstone. J. Pet. Sci. Eng. 100, 71–80 (2012)

    Article  Google Scholar 

  20. Nunes, R., Almeida, J.A.: Parallelization of sequential Gaussian, indicator and direct simulation algorithms. Comput. Geosci. 36(8), 1042–1052 (2010)

    Article  Google Scholar 

  21. Peredo, O., Ortiz, J.M.: Parallel implementation of simulated annealing to reproduce multiple-point statistics. Comput. Geosci. 37(8), 1110–1121 (2011)

    Article  Google Scholar 

  22. Straubhaar, J., Renard, P., Mariethoz, G., Froidevaux, R., Besson, O.: An improved parallel multiple-point algorithm using a list approach. Math. Geosci. 43(3), 305–328 (2011)

    Article  Google Scholar 

  23. Straubhaar, J., Walgenwitz, A., Renard, P.: Parallel multiple-point statistics algorithm based on list and tree structures. Math. Geosci. 45(2), 131–147 (2013)

    Article  Google Scholar 

  24. Mariethoz, G.: A general parallelization strategy for random path based geostatistical simulation methods. Comput. Geosci. 36, 953–958 (2010)

    Article  Google Scholar 

  25. Huang, T., Li, X., Zhang, T., Lu, D.T.: GPU-accelerated Direct Sampling method for multiple-point statistical simulation. Comput. Geosci. 57, 13–23 (2013)

    Article  Google Scholar 

  26. Huang, T., Lu, D.T., Li, X., Wang, L.: GPU-based SNESIM implementation for multiple-point statistical simulation. Comput.Geosci. 54, 75–87 (2013)

    Article  Google Scholar 

  27. Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, Inc., New York (1972)

    Google Scholar 

  28. Riyadh, A.R., Apostolos, P.: Representative elementary volume analysis of porous media using X-ray computed tomography. Powder Technol. 200, 69–77 (2010)

    Article  Google Scholar 

  29. Vik, B., Bastesen, E., Skauge, A.: Evaluation of representative elementary volume for a vuggy carbonate rock—Part: Porosity, permeability, and dispersivity. J. Pet. Sci. Eng. 112, 36–47 (2013)

    Article  Google Scholar 

  30. Clausnitzer, V, Hopmans, J.W.: Determination of phase-volume fractions from tomographic measurements in two-phase systems. Adv. Water Resour. 22(6), 577–584 (1999)

    Article  Google Scholar 

  31. Brown, G.O., Hsieh, H.T., Lucero, D.A.: Evaluation of laboratory dolomite core sample size using representative elementary volume concepts. J. Water Resour. Res. 36(5), 1199–1208 (2000)

    Article  Google Scholar 

  32. Journel, A.G.: Combining knowledge from diverse data sources: an alternative to traditional data independence hypothesis. Math. Geol. 34(5), 573–596 (2002)

    Article  Google Scholar 

  33. Tran, T.T.: Improving variogram reproduction on dense simulation grids. Comput. Geosci. 20(7–8), 1161–1168 (1994)

    Article  Google Scholar 

  34. Zhang, T.F.: Filter-based training pattern classification for spatial pattern simulation. Ph.D. Thesis. Stanford University, Stanford, CA (2006)

  35. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  Google Scholar 

  36. Honarkhah, M., Caers, J.: Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling. Math. Geosci. 42, 487–517 (2010)

    Article  Google Scholar 

  37. Honarkhah, M.: Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling. Ph.D. Thesis. Stanford University, Stanford, CA (2011)

  38. Leu, L., Berg, S., Enzmann, F., Armstrong, R.T.: M. Kersten. Fast X-ray Micro-Tomography of Multiphase Flow in Berea Sandstone: A Sensitivity Study on Image Processing (2014)

  39. Nordahl, K., Ringrose, P.S.: Identifying the Representative Elementary Volume for Permeability in Heterolithic Deposits Using Numerical Rock Models. Math. Geosci. 40, 753–771 (2008)

    Article  Google Scholar 

  40. Tahmasebi, P., Sahimi, M., Mariethoz, G., Hezarkhani, A.: Accelerating geostatistical simulations using graphics processing units (GPU). Comput. Geosci. 46, 51–59 (2012)

    Article  Google Scholar 

  41. Nvidia, C.: CUDA C best practices guide version 4.0. Tech. rep., NVIDIA Corporation (2011)

  42. Robert, S.M., Robert, S.B., Dary, W.G.: Boundary conditions for the lattice boltzmann method. Phys. Fluids. 8(7), 1788–1800 (1996)

    Article  Google Scholar 

  43. Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Signature of Non-Fickian Solute Transport in Complex Heterogeneous Porous Media. Phys. Rev. Lett. 107(204502), 1–4 (2011)

    Google Scholar 

  44. Ginting, V., Pereira, F., Rahunanthan, A.: A prefetching technique for prediction of porous media flows. Comput. Geosci. 2014. doi:10.1007/s10596-014-9413-3

  45. Hazra, S.B., Class, H., Helmig, R., Schulz, V.: Forward and inverse problems in modeling of multiphase flow and transport through porous media. Comput. Geosci. 8, 21–47 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Du, Y., Huang, T. et al. GPU-accelerated 3D reconstruction of porous media using multiple-point statistics. Comput Geosci 19, 79–98 (2015). https://doi.org/10.1007/s10596-014-9452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-014-9452-9

Keywords

Mathematics Subject Classifications (2010)

Navigation