Skip to main content
Log in

Reactivity of 2-amino[1,2,4]triazolo[1,5-а]-pyrimidines with various saturation of the pyrimidine ring towards electrophiles

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The effect of pyrimidine ring saturation in 2-amino[1,2,4]triazolo[1,5-а]pyrimidines on their reactivity as polyfunctional N-nucleophiles was studied by computational methods (reactivity indices and transition state energy values for the model reaction of S N2 alkylation with chloromethane, DFT B3LYP/6-311++G(2d,2p)), as well as experimentally (alkylation with benzyl bromide). The global nucleophilicity of partially hydrogenated aminotriazolopyrimidines was shown to be substantially higher than for aromatic analogs. The most likely sites for electrophilic attack in partially hydrogenated aminotriazolopyrimidines were the N-1 and N-3 atoms, as well as the amino group, and the probability of attack at the N-3 atom increased with harder electrophiles. The nucleophilicity of amino group and the N-1 atom was substantially decreased in aromatic aminotriazolopyrimidines, where the most likely sites of attack by hard electrophiles were the N-3 and N-4 atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Figure 4
Scheme 6
Scheme 7

Similar content being viewed by others

References

  1. (a) Fischer, G. Adv. Heterocycl. Chem. 2007, 95, 143. (b) Guan, A.; Liu, Ch.; Yang, X.; Dekeyser, M. Chem. Rev. 2014, 114, 7079. (c) Rodríguez-Torres, M.; Yoshida, E. M.; Marcellin, P.; Srinivasan, S.; Purohit, V. S.; Wang, C.; Hammond, J. L. Ann. Hepatol. 2014, 13, 364.

  2. (a) Common and Chemical Names of Herbicides Approved by the Weed Science Society of America Weed Sci. 2000, 48, 786. (b) Sabra, F. S.; Mahmoud, M. S. Asian Journal of Agriculture and Food Sciences 2015, 3, 103. (c) Hu, M.; Liu, X.; Dong, F.; Xu, J.; Li, Sh.; Xu, H.; Zheng, Y. Food Chem. 2015, 175, 395. (d) Zhu, X.; Zhang, M.; Liu, J.; Ge, J.; Yang, G. J. Agric. Food Chem. 2015, 63, 3377. (e) deBoer, G. J., Thornburgh, S., Gilbert, J.; Gast, R. E. Pest. Manag. Sci. 2011, 67, 279.

  3. (a) Yu, B.; Shi, X.-J.; Zheng, Y.-F.; Fang, Y.; Zhang, E.; Yu,.-Q.; Liu, H.-M. Eur. J. Med. Chem. 2013, 69, 323. (b) Vidler, L. R.; Filippakopoulos, P.; Fedorov, O.; Picaud, S.; Martin, S.; Tomsett, M.; Woodward, H.; Brown, N.; Knapp, S.; Hoelder, S. J. Med. Chem. 2013, 56, 8073. (c) Łakomska, I.; Hoffmann, K.; Wojtczak, A.; Sitkowski, J.; Maj, E.; Wietrzyk, J. J. Inorg. Biochem. 2014, 141, 188. (d) Li, Q.; Chen, Y.-M.; Hu, Y.-G.; Luo, X.; Ko, J. K. Sh.; Cheung, C. W. Res. Chem. Intermed. 2015, DOI: 10.1007/s11164-015-2064-8. (e) Hassan, G. S.; El-Sherbeny, M. A.; El-Ashmawy, M. B.; Bayomi, S. M.; Maarouf, A. R.; Badria, F. A. Arabian J. Chem. 2013, DOI: 10.1016/j.arabjc.2013.04.002.

  4. (a) Deng, X.; Kokkonda, S.; El Mazouni, F.; White, J.; Burrows, J. N.; Kaminsky, W.; Charman, S. A.; Matthews, D.; Rathod, P. K.; Phillips, M. A. J. Med. Chem. 2014, 57, 5381. (b) Da Silva, E. R.; Boechat, N.; Pinheiro, L. C. S.; Bastos, M. M.; Costa, C. C. P.; Bartholomeu, J. C.; da Costa, T. H. Chem. Biol. Drug Des. 2015, 86, 969. (c) Caballero, A. B.; Rodríguez-Diéguez, A.; Quirós, M.; Salas, J. M.; Huertas, Ó.; Ramírez-Macías, I.; Olmo, F.; Marín, C.; Chaves-Lemaur, G.; Gutierrez-Sánchez, R.; Sánchez-Moreno, M. Eur. J. Med. Chem. 2014, 85, 526.

  5. (a) Luo, Y.; Zhang, Sh.; Liu, Z.-J.; Chen, W.; Fu, J.; Zeng, Q.-F.; Zhu, H.-L. Eur. J. Med. Chem. 2013, 64, 54. (b) Wang, H.; Lee, M.; Peng, Z.; Blázquez, B.; Lastochkin, E.; Kumarasiri, M.; Bouley, R.; Chang, M.; Mobashery, Sh. J. Med. Chem. 2015, 58, 4194.

  6. (a) Wang, L.; Tian, Y.; Chen, W.; Liu, H.; Zhan, P.; Li, D.; Liu, H.; De Clercq, E.; Pannecouque, C.; Liu, X. Eur. J. Med. Chem. 2014, 85, 293. (b) Huang, B.; Li, C.; Chen, W.; Liu, T.; Yu, M.; Fu, L.; Sun, Y.; Liu, H.; De Clercq, E.; Pannecouque, C.; Balzarini, J.; Zhan, P.; Liu, X. Eur. J. Med. Chem. 2015, 92, 754. (c) Singer, R. A.; Ragan, J. A.; Bowles, P.; Chisowa, E.; Conway, B. G.; Cordi, E. M.; Leeman, K. R.; Letendre, L. J.; Sieser, J. E.; Sluggett, G. W.; Stanchina, C. L.; Strohmeyer, H.; Blunt, J.; Taylor, S.; Byrne, C.; Lynch, D.; Mullane, S.; O'Sullivan, M. M.; Whelan, M. Org. Process Res. Dev. 2014, 18, 26. (d) Massari, S.; Nannetti, G.; Desantis, J.; Muratore, G.; Sabatini, S.; Manfroni, G.; Mercorelli, B.; Cecchetti, V.; Palù, G.; Cruciani, G.; Loregian, A.; Goracci, L.; Tabarrini, O. J. Med. Chem. 2015, 58, 3830. (e) Khalymbadzha, I. A.; Shestakova, T. S.; Subbotina, J. O.; Eltsov, O. S.; Musikhina, A. A.; Rusinov, V. L.; Chupakhin, O. N.; Karpenko, I. L.; Jasko, M. V.; Kukhanova,. K.; Deev, S. L. Tetrahedron 2014, 70, 1298. (f) Lepri, S.; Nannetti, G.; Muratore, G.; Cruciani, G.; Ruzziconi, R.; Mercorelli, B.; Palù, G.; Loregian, A.; Goracci, L. J. Med. Chem. 2014, 57, 4337.

  7. Ashour, H. M.; Shaaban, O. G.; Rizk, O. H.; El-Ashmawy, I. M. Eur. J. Med. Chem. 2013, 62, 341.

    Article  CAS  Google Scholar 

  8. Brigance, R. P.; Meng, W.; Fura, A.; Harrity, Th.; Wang, A.; Zahler, R.; Kirby, M. S.; Hamann, L. G. Bioorg. Med. Chem. Lett. 2010, 20, 4395.

    Article  CAS  Google Scholar 

  9. (a) Chernyshev, V. M.; Sokolov, A. N.; Taranushich, V. A. Russ. J. Appl. Chem. 2007, 80, 1691. [Zh. Prikl. Khim. 2007, 1662.] (b) Chernyshev, V. M.; Sokolov, A. N.; Khoroshkin, D. A.; Taranushich, V. A. Russ. J. Org. Chem. 2008, 44, 715. [Zh. Org. Khim. 2008, 724.] (c) Chernyshev, V. M.; Khoroshkin, D. A.; Sokolov, A. N.; Gladkov, E. S.; Shishkina, S. V.; Shishkin, O. V.; Desenko, S..; Taranushich, V. A. J. Heterocycl. Chem. 2008, 45, 1419. (d) Chernyshev, V. M.; Sokolov, A. N.; Taranushich, V. A. Russ. J. Chem. 2006, 79, 1134. [Zh. Prikl. Khim. 2006, 1144.]

  10. (a) Chernyshev, V. M.; Pyatakov, D. A.; Sokolov, A. N.; Astakhov, A. V.; Gladkov, E. S.; Shishkina, S. V.; Shishkin, O. V. Tetrahedron 2014, 70, 684. (b) Chernyshev, V. M.; Pyatakov, D. A.; Astakhov, A. V.; Sokolov, A. N.; Fakhrutdinov, A. N.; Rybakov, V. B.; Chernyshev, V. V. Tetrahedron 2015, 71, 6259. (c) Sokolov, A. N.; Mischenko, M. S.; Gladkov, E. S.; Chernyshev, V. M. Chem. Heterocycl. Compd. 2011, 47, 249. [Khim. Geterotsikl. Soedin. 2011, 308.] (d) Pyatakov, D. A.; Sokolov, A. N.; Astakhov, A. V.; Chernenko, A. Yu.; Fakhrutdinov, A. N.; Rybakov, V. B.; Chernyshev, V. V.; Chernyshev, V. M. J.Org. Chem. 2015, 80, 10694.

  11. (a) Chebanov, V. A.; Desenko, S. M.; Gurley T. W. Azaheterocycles Based on ɑ,ß-Unsaturated Carbonyls; Springer, 2008, p. 61. (b) Sedash, Yu. V.; Gorobets, N. Yu.; Chebanov, V. A.; Konovalova, I. S.; Shishkin, O. V.; Desenko, S. M. RSC Advances 2012, 2, 6719. (c) Chebanov, V. A.; Gura K. A.; Desenko, S. M. Top. Heterocycl. Chem. 2010, 23, 41. (d) Chebanov, V. A.; Desenko, S. M. Chem. Heterocycl. Compd. 2012, 48, 566. [Khim. Geterotsikl. Soedin. 2012, 607.]

  12. (a) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801. (b) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512. (c) Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 6723.

  13. (a) Chattaraj, P. K.; Maiti, B. J. Phys. Chem. A 2001, 105, 169. (b) Pratihar, S.; Roy, S. J. Org. Chem. 2010, 75, 4957.

  14. (a) Fukui, K. Science 1982, 218, 747. (b) Fuentealba, P.; Contreras, R. In Reviews in Modern Quantum Chemistry; Sen, K., Ed.; Elsevier, 2002, Vol. 2, p. 1013.

  15. Koopmans, T. A. Physica 1933, 1, 104.

    Article  CAS  Google Scholar 

  16. (a) Contreras, R.; Andres, J.; Safont, V. S.; Campodonico, P.; Santos, J. G. J. Phys. Chem. A 2003, 107, 5588. (b) Domingo, L. R.; Chamorro, E.; Pérez P. J. Org. Chem. 2008, 73, 4615.

  17. Chattaraj, P. K. J. Phys. Chem. A 2001, 105, 511.

    Article  CAS  Google Scholar 

  18. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, 1990.

    Google Scholar 

  19. (a) Gadre, S. R.; Shrivastava, I. H. J. Chem. Phys. 1991, 94, 4384. (b) Suresh, C. H.; Alexander, P.; Vijayalakshmi, K. P.; Sajith, P. K.; Gadre, S. R. Phys. Chem. Chem. Phys. 2008, 10, 6492.

  20. Fuentes, J. J.; Lenoir, J. A. Can. J. Chem. 1976, 54, 3620.

    Article  CAS  Google Scholar 

  21. Chernyshev, V. M.; Vlasova, A. G.; Astakhov, A. V.; Shishkina, S. V.; Shishkin, O. V. J. Org. Chem. 2015, 80, 375.

    Article  CAS  Google Scholar 

  22. Bishop, B. C.; Marley, H.; Preston, P. N.; Wright, S. H. B. J. Chem. Soc., Perkin Trans. 1 1999, 1527.

  23. Burgi H.-B.; Dunitz J. D. Structure Correlation; VCH: Weinheim, 1994, Vol. 2, p. 741.

  24. Chernyshev, V. M.; Rakitov, V. A.; Astakhov, A. V.; Sokolov, A. N.; Zemlyakov, N. D.; Taranushich, V. A. Russ. J. Appl. Chem. 2006, 79, 624. [Zh. Prikl. Khim. 2006, 632].

  25. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E., Jr.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.,: Wallingford, 2013.

  26. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.

  27. (a) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. (b) Bachrach, S. M. Computational Organic Chemistry; Wiley: Hoboken, New Jersey, 2014.

  28. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.

Download references

This work received financial support from the Russian Science Foundation (project 14-23-00078). The authors would also like to acknowledge the assistance with GC-MS analysis received at the Collective Use Center „Nanotechnologies” of the Platov South-Russian State Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Chernyshev.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2015, 51(11/12), 1039–1047

(Oleg V. Shishkin) Deceased.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary information file

(PDF 1697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astakhov, A.V., Sokolov, A.N., Pyatakov, D.A. et al. Reactivity of 2-amino[1,2,4]triazolo[1,5-а]-pyrimidines with various saturation of the pyrimidine ring towards electrophiles. Chem Heterocycl Comp 51, 1039–1047 (2015). https://doi.org/10.1007/s10593-016-1816-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-016-1816-8

Keywords

Navigation