Skip to main content
Log in

Quantum-chemical and NMR study of nitrofuroxanoquinoline cycloaddition

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Using DFT/B3LYP and ab initio RHF quantum-chemical calculations in the triple-zeta basis set 6-31++G** the endo and exo cycloaddition mechanism for the interaction of ethyl vinyl ether, trimethylsilyloxybutadiene, or cyclopentadiene with 5-nitro-7,8-furoxanoquinolines was studied in details. Considering that both in solutions and crystals nitrofuroxanoquinoline exists as an inseparable mixture of two N-oxide tautomers, all cycloaddition processes were studied for both of them. The studied mechanisms practically do not depend on the location of the exocyclic oxygen atom in nitrofuroxanoquinoline molecule. At the first step of all reactions the conjugated nitroarene fragments C=C–N=O react with nucleophilic reagents following the mechanism of endo-[4+2] cycloaddition with inverse electronic demand. Further (in the cases of trimethylsilyloxybutadiene and cyclopentadiene) endo-[4+2] cycloadducts recyclize spontaneously according to the mechanism of [3,3] sigmatropic rearrangement into more thermodynamically stable, experimentally detected endo-[2+4] cycloadducts. Both endo-[4+2] and endo-[2+4] cycloadducts obtained from cyclopentadiene and nitrofuroxanoquinoline have been experimentally isolated and characterized. For this case, the kinetic and activation parameters of [4+2] → [2+4] transformation have been studied by 1H NMR method, which have shown an excellent agreement with quantum-chemical results. In all cases the exo processes are one-step reactions, less favorable kinetically than their endo competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Scheme 2
Scheme 3
Figure 2
Scheme 4
Figure 3
Scheme 5
Figure 4
Scheme 6
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. (a) Bunnett, J. F.; Zahler, R. E. Chem. Rev. 1951, 49, 273. (b) Miller, J. Aromatic Nucleophilic Substitution; Elsevier: Amsterdam, 1968. (c) Buncel, E.; Crampton, M. R.; Strauss, M. J.; Terrier, F. Electron-Deficient Aromatic- and Heteroaromatic Base Interactions; Elsevier: Amsterdam, 1984. (d) Terrier, F. Nucleophilic Aromatic Displacement. The Influence of the Nitro Group; VCH: New York, 1991.

  2. (a) Beck, J. R. Tetrahedron, 1978, 34, 2057. (b) Vlasov, V. M. Russ. Chem. Rev. 2003, 72, 681. [Usp. Khim. 2003, 72, 764.] (c) Forlani, L. In The Chemistry of Amino, Nitroso, Nitro and Related Groups; Patai, S., Ed.; John Wiley and Sons: Chichester, 1996, p. 423.

  3. (a) Terrier, F. Chem. Rev. 1982, 82, 77. (b) Buncel, E.; Dust, J. M.; Terrier, F. Chem. Rev. 1995, 95, 2261. (c) Strauss, M. J. Chem. Rev. 1970, 70, 667. (d) Artamkina, G. A.; Egorov, M. P.; Beletskaya, I. P. Chem. Rev. 1982, 82, 427.

  4. (a) Terrier, F.; Millot F.; Norris, W. P. J. Am. Chem. Soc. 1976, 98, 5883. (b) Terrier, F.; Kizilian, E.; Halle, J. C.; Buncel, E. J. Am. Chem. Soc. 1992, 114, 1740. (c) Di Nunno, L.; Florio, S.; Todesco, P. E. J. Chem. Soc., Perkin Trans. 2 1975, 1469. (d) Read R. W.; Norris, W. P. Aust. J. Chem. 1985, 38, 435. (e) Vichard, D.; Boubaker, T.; Terrier, F.; Pouet, M. J.; Dust, J. M.; Buncel, E. Can. J. Chem. 2001, 79, 1617. (f) Boubaker, T.; Chatrousse, A. P.; Terrier, F.; Tangour, B.; Dust, J. M.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 2002, 1627. (g) Boubaker, T.; Goumont, R.; Jan, E.; Terrier, F. Org. Biomol. Chem. 2003, 1, 2764. (h) Filatov, I. E.; Rusinov, G. L.; Chupakhin, O. N.; Solans, X.; Font-Bardia, M.; Font-Altaba, M. Russ. Chem. Bull. 1994, 43, 1214. [Izv. Akad. Nauk, Ser. Khim. 1994, 1278.] (i) Strauss, M. J.; Renfrow, R. A.; Buncel, E. J. Am. Chem. Soc. 1983, 105, 2473. (j) Buncel, E.; Renfrow, R. A.; Strauss, M. J. J. Org. Chem., 1987, 52, 488. (k) Crampton, M. R.; Rabbitt, L. C.; Terrier, F. Can. J. Chem. 1999, 77, 639. (l) Crampton, M. R.; Lunn, R. E. A.; Lucas, D. Org. Biomol. Chem. 2003, 1, 3438. (m) Buncel, E.; Dust, J. M.; Manderville, R. A. J. Am. Chem. Soc. 1996, 118, 6072. (n) Terrier, F.; Sebban, M.; Goumont, R.; Hallé, J. C.; Moutiers, G.; Cangelosi, I.; Buncel, E. J. Org. Chem. 2000, 65, 7391. (o) Sebban, M.; Goumont, R.; Hallé, J. C.; Terrier, F.; Marrot, J. Chem. Commun. 1999, 1009. (p) Boga, C.; Forlani, L.; Del Vecchio, E.; Mazzanti, A.; Todesco, P. E. Angew. Chem., Int. Ed. 2005, 44, 3285. (q) Forlani, L.; Tocke, A. L.; Del Vecchio, E.; Lakhdar, S.; Goumont, R.; Terrier, F. J. Org. Chem. 2006, 71, 5527. (r) Boga, C.; Del Vecchio, E.; Forlani, L.; Goumont, R.; Terrier, F.; Tozzi, S. Chem.–Eur. J. 2007, 13, 9600.

  5. (a) Terrier, F.; Lakhdar, S.; Boubaker, T.; Goumont, R. J. Org. Chem. 2005, 70, 6242. (b) Lakhdar, S.; Goumont, R.; Boubaker, T.; Mokhtari, M.; Terrier, F. Org. Biomol. Chem. 2006, 4, 1910. (c) Lakhdar, S.; Goumont, R.; Terrier, F.; Boubaker, T.; Dust, J. M.; Buncel, E. Org. Biomol. Chem. 2007, 5, 1744. (d) Terrier, F.; Xiao, L.; Hlaibi, M.; Halle, J. C. J. Chem. Soc., Perkin Trans. 2, 1993, 337. (e) Rodriguez- Dafonte, P.; Terrier, F.; Lakhdar, S.; Kurbatov, S.; Goumont, R. J. Org. Chem. 2009, 74, 3305. (f) Crampton, M. R.; Delaney, J.; Rabbitt, L. C. J. Chem. Soc., Perkin Trans. 2, 1999, 2473. (g) Boga, C.; Del Vecchio, E.; Forlani, L.; Mazzanti, A.; Lario, C. M.; Todesco, P. E.; Tozzi, S. J. Org. Chem. 2009, 74, 5568. (h) Jin, P.; Li, F.; Riley, K.; Lenoir, D.; Schleyer, P. v. R.; Chen, Z. J. Org. Chem. 2010, 75, 3761. (i) Kurbatov, S.; Tatarov, A.; Minkin, V.; Goumont, R.; Terrier, F. Chem. Commun. 2006, 4279. (j) Tatarov, A.; Kurbatov, S.; Borodkin, G.; Goumont, R.; Terrier, F. Tetrahedron 2010, 66, 995.

  6. (a) Hallé, J. C.; Vichard, D.; Pouet, M. J.; Terrier, F. J. Org. Chem. 1997, 62, 7178. (b) Vichard, D.; Hallé, J.-C.; Huguet, B.; Pouet, M.-J.; Riou, D.; Terrier, F. Chem. Commun. 1998, 791. (c) Kresze, G.; Bathelt, H. Tetrahedron, 1973, 29, 1043. (d) Sepulcri, P.; Halle, J.C.; Goumont, R.; Riou, D.; Terrier, F. J. Org. Chem. 1999, 64, 9254. (e) Goumont, R.; Sebban, M.; Sépulcri, P.; Marrot, J.; Terrier, F. Tetrahedron 2002, 58, 3249. (f) Pugnaud, A.; Masure, D.; Hallé, J. C.; Chaquin, P. J. Org. Chem. 1997, 62, 8687. (g) Sepulcri, P.; Goumont, R.; Hallé, J. C.; Riou, D.; Terrier, F. J. Chem. Soc., Perkin Trans. 2 2000, 51. (h) Goumont, R.; Sebban, M.; Terrier, F. Chem. Commun. 2002, 2110. (i) Vichard, D.; Alvey, L.; Terrier, F. Tetrahedron Lett. 2001, 42, 7571. (j) Steglenko, D. V.; Kletsky, M. E.; Kurbatov, S. V.; Tatarov, A. V.; Minkin, V. I.; Goumont, R.; Terrier, F. J. Phys. Org. Chem. 2009, 22, 298. (k) Kurbatov, S.; Goumont, R.; Lakhdar, S.; Marrot, J.; Terrier, F. Tetrahedron 2005, 61, 8167. (l) Lakhdar, S.; Terrier, F.; Vichard, D.; Berionni, G.; El Guesmi, N.; Goumont, R.; Boubaker, T. Chem.–Eur. J. 2010, 16, 5681.

  7. (a) Buncel, E.; Terrier, F. Org. Biomol. Chem. 2010, 8, 2285. (b) Terrier, F.; Dust, J. M.; Buncel, E. Tetrahedron 2012, 68, 1829.

  8. Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. Tetrahedron 2002, 58, 4417.

    Article  CAS  Google Scholar 

  9. Pérez, P.; Domingo, L. R.; Aurell, M. J.; Contreras, R. Tetrahedron 2003, 59, 3117.

    Article  Google Scholar 

  10. Parr, R. G.; von Szentpály, L.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922.

    Article  CAS  Google Scholar 

  11. (a) Bastrakov, M. A.; Starosotnikov, A. M.; Fedyanin, I. V.; Kachala, V. V.; Shevelev, S. A. Mendeleev Commun. 2014, 24, 203. (b) Bastrakov, M. A.; Starosotnikov, A. M.; Kachala, V. V.; Fedyanin, I. V.; Shevelev, S. A. Asian J. Org. Chem. 2015, 4, 146.

  12. Nösberger, P.; Bauder, A.; Günthard, H. H. Chem. Phys. 1973, 1, 426.

    Article  Google Scholar 

  13. (a) Sepulcri, P.; Hallé, J. C.; Goumont, R.; Riou, D.; Terrier, F. J. Org. Chem. 1999, 64, 9254. (b) Hallé, J. C.; Vichard, D.; Pouet, M. J.; Terrier, F. J. Org. Chem. 1997, 62, 7178.

  14. Kurbatov, S. V.; Goumont, R.; Marrot, J.; Terrier, F. Tetrahedron Lett. 2004, 45, 1037.

    Article  CAS  Google Scholar 

  15. Pugnaud, S.; Masure, D.; Hallé, J.-C.; Chaquin, P. J. Org. Chem. 1997, 62, 8687.

    Article  CAS  Google Scholar 

  16. Steglenko, D. V. Ph. D. Thesis, Rostov-on-Don, 2012.

  17. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

  18. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab initio Molecular Orbital Theory, Wiley – Interscience: New York, 1986.

  19. Li, X.; Frisch, M. J. J. Chem. Theory Comput. 2006, 2, 835.

    Article  CAS  Google Scholar 

  20. (a) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. B 1988, 88, 899.

  21. Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. J. Phys. Chem. A 2002, 106, 6871.

    Article  CAS  Google Scholar 

  22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, 2009.

  23. Fuentealba, P.; Pérez, P.; Contreras, R. J. Chem. Phys. 2000, 113, 2544.

    Article  CAS  Google Scholar 

  24. Arroyo, P.; Picher, M. T.; Domingo, L. R.; Terrier, F. Tetrahedron 2005, 61, 7359.

    Article  CAS  Google Scholar 

  25. Yamabe, S.; Minato, T. J. Org. Chem. 2000, 65, 1830.

    Article  CAS  Google Scholar 

  26. Craig, D.; Shipman, J. J.; Fowler, R. B. J. Am. Chem. Soc. 1961, 83, 2885.

    Article  CAS  Google Scholar 

  27. Gleiter, R.; Bohm, M. C. Pure Appl. Chem. 1983, 55, 237.

    Article  CAS  Google Scholar 

  28. (a) Hine, J. J. Org. Chem. 1966, 31, 1236. (b) Hine, J. In Advances in Physical Organic Chemistry; Gold, V.; Bethell, D., Eds.; Academic Press: London, 1977, vol. 15, p. 1. (c) Igawa, A.; Fukutome, H. Chem. Phys. Lett. 1987, 133, 399.

  29. Terrier, F. Modern Nucleophilic Aromatic Substitution; Wiley-VCH: Weinheim, 2013, p. 163.

Download references

The work was performed with the financial support of the Russian Science Fund (project 14-13-00103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg N. Burov.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2015, 51(9), 845–857

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steglenko, D.V., Shevelev, S.A., Kletskii, M.E. et al. Quantum-chemical and NMR study of nitrofuroxanoquinoline cycloaddition. Chem Heterocycl Comp 51, 845–857 (2015). https://doi.org/10.1007/s10593-015-1785-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-015-1785-3

Keywords

Navigation