Skip to main content

Advertisement

Log in

Genetic structure of winter populations of the endangered Indiana bat (Myotis sodalis) prior to the white nose syndrome epidemic: implications for the risk of disease spread

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The spread of white nose syndrome raises serious concerns about the long-term viability of affected bat species. Here we examine the geographic distribution of genetic variation, levels of population connectivity that may influence the spatial spread of WNS, and the likelihood that recent population declines in regions affected by WNS have led to the loss of unique genetic variation for the endangered Indiana bat (Myotis sodalis). We amplified a fragment of the mitochondrial control region for 375 individuals and genotyped 445 individuals at 10 microsatellite loci from 18 sampling sites distributed across the majority of the species’ range. Analysis of mitochondrial DNA indicated the presence of at least five distinct matrilineal clusters, with the most pronounced differences between northeastern sites and those in the rest of the range. The majority of individuals in the Ozark-Central, Midwest, and Appalachian recovery units fell into a single cluster. Significant differentiation also was observed between one Appalachian and one Midwestern site and the majority of other sites. However, using nuclear microsatellites we observed the absence of differentiation and widespread gene flow among all hibernacula, suggesting the occurrence of extensive gene flow through dispersal and mating. The absence of genetically distinct populations within the range of Indiana bats indicates a lack of barriers to WNS transmission, and it is unlikely that significant portions of the hibernating population of Indiana bats will remain disease free into the future. Further, while matrilineal gene flow was restricted among some sites and regions, we found no genetic evidence to support the division of Indiana bats into separate recovery units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barton NH, Charlesworth B (1984) Genetic revolutions, founder effects, and speciation. Ann Rev Ecol Syst 15:133–164

    Article  Google Scholar 

  • Biek R, Real LA (2010) The landscape genetics of infectious disease emergence and spread. Mol Ecol 19:3515–3531

    Article  PubMed  PubMed Central  Google Scholar 

  • Blehert DS, Hicks AC, Behr M et al (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323:227

    Article  CAS  PubMed  Google Scholar 

  • Britzke ER, Hicks AC, Von Oettingen SL, Darling SR (2006) Description of spring roost trees used by female Indiana bats (Myotis sodalis) in the Lake Champlain Valley of Vermont and New York. Am Midl Nat 155:181–187

    Article  Google Scholar 

  • Britzke ER, Loeb SC, Romanek CS, Hobson KA, Vonhof MJ (2012) Variation in catchment areas of Indiana bat (Myotis sodalis) hibernacula inferred from stable hydrogen (δ2H) isotope analysis. Can J Zool 90:1243–1250

    Article  CAS  Google Scholar 

  • Burland TM, Barratt EM, Beaumont MA, Racey PA (1999) Population genetic structure and gene flow in a gleaning bat, Plecotus auritus. Proc R Soc Lond B 266:975–980

    Article  Google Scholar 

  • Burns LE, Frasier TR, Broders HG (2014) Genetic connectivity among swarming sites in the wide ranging and recently declining little brown bat (Myotis lucifugus). Ecol Evol 4:4130–4149

    Article  PubMed  PubMed Central  Google Scholar 

  • Castella V, Ruedi M, Excoffier L (2001) Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis. J Evol Biol 14:708–720

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Cohen ML (2000) Changing patterns of infectious disease. Nature 406:762–767

    Article  CAS  PubMed  Google Scholar 

  • Cohen S (2002) Strong positive selection and habitat-specific amino acid substitution patterns in MHC from an estuary fish under intense pollution stress. Mol Biol Evol 19:1870–1880

    Article  CAS  PubMed  Google Scholar 

  • Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Let 11:1304–1315

    Article  Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 17:390–395

    Google Scholar 

  • Cross PC, Lloyd-Smith JO, Johnson PLF, Getz WM (2005) Duelling timescales of host movement and disease recovery determine invasion of disease in structured populations. Ecol Let 8:587–595

    Article  Google Scholar 

  • Crow JF, Aiko K (1984) Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc Natl Acad Sci USA 19:6073–6077

    Article  Google Scholar 

  • Crowl TA, Crist TO, Parmenter RR, Belovsky G, Lugo AE (2008) The spread of invasive species and infectious disease as drivers of ecosystem change. Front Ecol Environ 6:238–246

    Article  Google Scholar 

  • Cryan PM, Meteyer CU, Boyles JG, Blehert DS (2010) Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol 8:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449

    Article  CAS  PubMed  Google Scholar 

  • Dixon MD (2011) Population genetic structure and natal philopatry in the widespread North American bat Myotis lucifugus. J Mammal 92:1343–1351

    Article  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • Duchesne P, Turgeon J (2012) FLOCK provides reliable solutions to the “number of populations” problem. J Hered 103:734–743

    Article  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Fallon SM (2007) Genetic data and the listing of species under the US Endangered Species Act. Conserv Biol 21:1186–1195

    Article  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Field KA, Johnson JS, Lilley TM, Reeder SM, Rogers EJ, Behr MJ, Reeder DM (2015) The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLoS Path 11:e1005168

    Article  CAS  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Frantz AC, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505

    Article  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    Article  CAS  PubMed  Google Scholar 

  • Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, Butchkoski CM, Kunz TH (2010) An emerging disease causes regional population collapse of a common North American bat species. Science 329:679–682

    Article  CAS  PubMed  Google Scholar 

  • Frick WF, Puechmaille SJ, Hoyt JR, Nickel BA, Langwig KE, Foster JT, Barlow KE, Bartonička T, Feller D, Haarsma A-J, Herzog C, Horáček I, van der Kooij J, Mulkens B, Petrov B, Reynolds R, Rodrigues L, Stihler CW, Turner GG, Kilpatrick AM (2015) Disease alters macroecological patterns of North American bats. Glob Ecol Biogeogr 24:741–749

    Article  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardner JE, Cook EA (2002) Seasonal and geographic distribution and quantification of potential summer habitat. In: Kurta A, Kennedy J (eds) The Indiana bat: biology and management of an endangered species. Bat Conservation International, Austin, pp 9–20

    Google Scholar 

  • Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS (2009) Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108:147–154

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hall JS (1962) A life history and taxonomic study of the Indiana bat, Myotis sodalis. Read Public Mus Art Gallery Sci Publ 12:1–68

    Google Scholar 

  • Hallam TG, Federico P (2012) The panzootic white-nose syndrome: an environmentally constrained disease? Transbound Emerg Dis 59:269–278

    Article  CAS  PubMed  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  CAS  PubMed  Google Scholar 

  • Harvey MJ (2002) Status and ecology in the southern United States. In: Kurta A, Kennedy J (eds) The Indiana bat: biology and management of an endangered species. Bat Conservation Int, Austin, pp 29–34

    Google Scholar 

  • Hicks A, Novak PG (2002) History, status, and behavior of hibernating populations in the Northeast. In: Kurta A, Kennedy J (eds) The Indiana bat: biology and management of an endangered species. Bat Conservation International, Austin, pp 35–47

    Google Scholar 

  • Hicks AC, Clark M, Cooper M, Herzog C (2005) Williams complex spring emergence tracking 2004 project summary. New York State Department of Environmental Conservation, Albany

  • Hoyt JR, Langwig KE, Okoniewski J, Frick WF, Stone WB, Kilpatrick AM (2014) Long-term persistence of Pseudogymnoascus destructans, the causative agent of white-nose syndrome, in the absence of bats. EcoHealth 12:330–333

    Article  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332

    Article  Google Scholar 

  • Humphrey SR (1978) Status, winter habitat, and management of the endangered Indiana bat, Myotis sodalis. Fla Sci 41:65–76

    Google Scholar 

  • Ingersoll TE, Sewall BJ, Amelon SK (2013) Improved analysis of long-term monitoring data demonstrates marked regional declines of bat populations in the eastern United States. PLoS One 8:e65907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson JS, Reeder DM, McMichael JWI, Meierhofer MB, Stern DWF, Lumadue SS, Sigler LE, Winters HD, Vodzak ME, Kurta A, Kath JA, Field KA (2014) Host, pathogen, and environmental characteristics predict white-nose syndrome mortality in captive little brown myotis (Myotis lucifugus). PLoS One 9:e112502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson LNL, McLeod BA, Burns LE, Arseneault K, Frasier TR, Broders HG (2015) Population genetic structure within and among seasonal site types in the little brown bat (Myotis lucifugus) and the northern long-eared bat (M. septentrionalis). PLoS One 10:e0126309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jombart T, Devillard S, Dufour A-B, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Kekkonen J, Hanski IK, Jensen H, Väisänen RA, Brommer JE (2011) Increased genetic differentiation in house sparrows after a strong population decline: from panmixia towards structure in a common bird. Biol Conserv 144:2931–2940

    Article  Google Scholar 

  • Kerth G, Mayer F, König B (2000) Mitochondrial DNA (mtDNA) reveals that female Bechstein’s bats live in closed societies. Mol Ecol 9:793–800

    Article  CAS  PubMed  Google Scholar 

  • Kerth G, Mayer F, Petit E (2002) Extreme sex-biased dispersal in the communally breeding, nonmigratory Bechstein’s bat (Myotis bechsteinii). Mol Ecol 11:1491–1498

    Article  CAS  PubMed  Google Scholar 

  • Kerth G, Kiefer A, Trappmann C, Weishaar M (2003) High gene diversity at swarming sites suggest hot spots for gene flow in the endangered Bechstein’s bat. Conserv Genet 4:491–499

    Article  CAS  Google Scholar 

  • Kierepka EM, Latch EK (2015) Performance of partial statistics in individual-based landscape genetics. Mol Ecol Resour 15:512–525

    Article  CAS  PubMed  Google Scholar 

  • Kurta A, Murray SW (2002) Philopatry and migration of banded Indiana bats (Myotis sodalis) and effects of radio transmitters. J Mammal 83:585–589

    Article  Google Scholar 

  • Lachish S, Miller KJ, Storfer A, Goldizen AW, Jones ME (2011) Evidence that disease-induced population decline changes genetic structure and alters dispersal patterns in the Tasmanian devil. Heredity 106:172–182

    Article  CAS  PubMed  Google Scholar 

  • Lande R (1980) Genetic variation and phenotypic evolution during allopatric speciation. Am Nat 116:463–479

    Article  Google Scholar 

  • Langwig KE, Frick WF, Bried JT, Hicks AC, Kunz TH, Kilpatrick AM (2012) Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol Lett 15:1050–1057

    Article  PubMed  Google Scholar 

  • Langwig KE, Hoyt JR, Parise KL, Kath J, Kirk D, Frick WF, Foster JT, Kilpatrick AM (2015) Invasion dynamics of white-nose syndrome fungus, Midwestern United States, 2012–2014. Emerg Infect Dis 21:1023–1026

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurance WF, Useche DC (2009) Environmental synergisms and extinctions of tropical species. Conserv Biol 23:1427–1437

    Article  PubMed  Google Scholar 

  • Legendre P, Fortin M-J, Borcard D (2015) Should the Mantel test be used in spatial analysis? Methods Ecol Evol 6:1239–1247

    Article  Google Scholar 

  • Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Article  Google Scholar 

  • McLeod BA, Burns LE, Frasier TR, Broders HG (2015) Effect of oceanic straits on gene flow in the recently endangered little brown bat (Myotis lucifugus) in maritime Canada: implications for the spread of white-nose syndrome. Can J Zool 93:427–437

    Article  CAS  Google Scholar 

  • Meirmans PG (2012) AMOVA-based clustering of population genetic data. J Hered 103:744–750

    Article  PubMed  Google Scholar 

  • Meteyer CU, Buckles EL, Blehert DS, Hicks AC, Green DE, Shearn-Bochsler V, Thomas NJ, Gargas A, Behr MJ (2009) Histopathologic criteria to confirm white-nose syndrome in bats. J Vet Diagn Investig 21:411–414

    Article  Google Scholar 

  • Miller-Butterworth CM, Vonhof MJ, Rosenstern J, Turner GG, Russell AL (2014) Genetic structure of little brown bats (Myotis lucifugus) corresponds with spread of white-nose syndrome among hibernacula. J Hered 105:354–364

    Article  PubMed  Google Scholar 

  • Oyler-McCance SJ, Fike JA (2011) Characterization of small microsatellite loci isolated in endangered Indiana bat (Myotis sodalis) for use in non-invasive sampling. Conserv Genet Res 3:243–245

    Article  Google Scholar 

  • Palsbøll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    Article  PubMed  Google Scholar 

  • Pärn H, Ringsby TH, Jensen H, Saether B-E (2011) Spatial heterogeneity in the effects of climate and density-dependence on dispersal in a house sparrow metapopulation. Proc R Soc Lond B 279:144–152

    Article  Google Scholar 

  • Pedersen AB, Jones KE, Nunn CL, Altizer S (2007) Infectious diseases and extinction risk in wild mammals. Cons Biol 21:1269–1279

    Article  Google Scholar 

  • Petit E, Balloux F, Goudet J (2001) Sex-biased dispersal in a migratory bat: a characterization using sex-specific demographic parameters. Evolution 55:635–640

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radwan J, Biedrzycka A, Babik W (2010) Does reduced MHC diversity decrease viability of vertebrate populations? Biol Conserv 143:537–544

    Article  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Reeder DM, Frank CL, Turner GG, Meteyer CU, Kurta A, Britzke ER, Vodzak ME, Darling SR, Stihler CW, Hicks AC, Jacob R, Grieneisen LE, Brownlee SA, Muller LK, Blehert DS (2012) Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS One 7:e38920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees EE, Pond BA, Cullingham CI, Tinline RR, Ball D, Kyle CJ, White BN (2009) Landscape modeling spatial bottlenecks: implications for raccoon rabies disease spread. Biol Lett 5:387–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds HT, Ingersoll T, Barton HA (2015) Modeling the environmental growth of Pseudogymnoascus destructans and its impact on the white-nose syndrome epidemic. J Wildl Dis 51:318–331

    Article  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell CA, Smith DL, Childs JE, Real LA (2005) Predictive spatial dynamics and strategic planning for a raccoon rabies emergence in Ohio. PLoS Biol 3:e88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slatkin M (1991) Inbreeding coefficients and coalescence times. Genet Res 58:167–175

    Article  CAS  PubMed  Google Scholar 

  • Stadelmann B, Lin L-K, Kunz TH, Ruedi M (2007) Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol Phylog Evol 43:32–48

    Article  CAS  Google Scholar 

  • Taft HR, Roff DA (2012) Do bottlenecks increase additive genetic variance? Conserv Genet 13:333–342

    Article  Google Scholar 

  • Thogmartin WE, King RA, McKann PC, Szymanski JA, Pruitt L (2012a) Population-level impact of white-nose syndrome on the endangered Indiana bat. J Mammal 93:1086–1098

    Article  Google Scholar 

  • Thogmartin WE, King RA, Szymanski JA, Pruitt L (2012b) Space-time models for a panzootic in bats, with a focus on the endangered Indiana bat. J Wildl Dis 48:876–887

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgens DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo RG, Amelon SK (2009) Development of microsatellite markers in Myotis sodalis and cross-species amplification in M. grisescens, M. leibii, M. lucifugus, and M. septentrionalis. Conserv Genet 10:1965–1968

    Article  CAS  Google Scholar 

  • Turner GG, Reeder DM, Coleman JTH (2011) A five-year assessment of mortality and geographic spread of white-nose syndrome in North American bats and a look to the future. Bat Res News 52:13–27

    Google Scholar 

  • US Fish and Wildlife Service (2007) Indiana bat (Myotis sodalis) draft recovery Plan: first revision. US Fish and Wildlife Service, Fort Snelling

    Google Scholar 

  • US Fish and Wildlife Service (2016) White-nose syndrome.org. www.whitenosesyndrome.org. Accessed 17 Jan 2016

  • US Fish and Wildlife Service, National Marine Fisheries Service (1998) Endangered species consultation handbook. US Fish and Wildlife Service, National Marine Fisheries Service, Washington, DC

    Google Scholar 

  • Varvio SL, Chakraborty R, Nei M (1986) Genetic variation in subdivided populations and conservation genetics. Heredity 57:189–198

    Article  PubMed  Google Scholar 

  • Veith M, Beer N, Kiefer A, Johannesen J, Seitz A (2004) The role of swarming sites for maintaining gene flow in the brown long-eared bat (Plecotus auritus). Heredity 93:342–349

    Article  CAS  PubMed  Google Scholar 

  • Verant ML, Meteyer CU, Speakman JR, Cryan PM, Lorch JM, Blehert DS (2014) White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol 14:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vonhof MJ, Strobeck C, Fenton MB (2008) Genetic variation and population structure in big brown bats (Eptesicus fuscus): is female dispersal important? J Mammal 89:1411–1420

    Article  Google Scholar 

  • Vonhof MJ, Russell AL, Miller-Butterworth CM (2015) Range-wide genetic analysis of little brown bat (Myotis lucifugus) populations: estimating the risk of spread of white-nose syndrome. PLoS One 10:e0128713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilder AP, Frick WF, Langwig KE, Kunz TH (2011) Risk factors associated with mortality from white-nose syndrome among hibernating bat colonies. Biol Lett 7:950–953

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilder AP, Kunz TH, Sorenson MD (2015) Population genetic structure of a common host predicts the spread of white-nose syndrome, an emerging infectious disease in bats. Mol Ecol 24:5495–5506

    Article  PubMed  Google Scholar 

  • Wilkinson GS, Chapman AM (1991) Length and sequence variation in evening bat D-loop mtDNA. Genetics 128:607–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson GS, Mayer FM, Kerth G, Petri B (1997) Evolution of repeated sequence arrays in the D-loop region of bat mitochondrial DNA. Genetics 146:1035–1048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Ann Rev Ecol Evol Syst 37:433–458

    Article  Google Scholar 

  • Worthington Wilmer J, Barratt E (1996) A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Res News 37:1–3

    Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the US Fish and Wildlife Service, the US Forest Service, and the University of Missouri. We thank V. Brack, Jr., E. Britzke, R. Clawson, M. Craddock, M. Harvey, A. Hicks, S. Pruitt, K. Womack, and C. Stihler for collecting samples, L. Eggert, A. Isabelle and L. Saidak for help in the lab, and J. Ryan and J. Glatz for help producing the range map. S. Gill provided valuable comments on earlier versions of this manuscript.

Funding

This study was funded by the US Fish and Wildlife Service, the US Forest Service, and the University of Missouri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten J. Vonhof.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1780 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vonhof, M.J., Amelon, S.K., Currie, R.R. et al. Genetic structure of winter populations of the endangered Indiana bat (Myotis sodalis) prior to the white nose syndrome epidemic: implications for the risk of disease spread. Conserv Genet 17, 1025–1040 (2016). https://doi.org/10.1007/s10592-016-0841-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0841-6

Keywords

Navigation