Skip to main content

Advertisement

Log in

The puzzling demographic history and genetic differentiation of the twaite shad (Alosa fallax) in the Ebro River

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Ebro, the largest Iberian river draining into the Mediterranean, historically supported one of the most important twaite shad (Alosa fallax) populations in the region. However, during the twentieth century multiple anthropogenic changes caused a severe decline and the presumed extinction of this species from the river by the 1970s. Its unexpected reappearance in 2004 thus provoked sound interest and raised important questions on the origin of those individuals and their genetic variability, which we address in this study. Adult shads captured in the Ebro from 2005 to 2008, together with samples from three other Mediterranean populations (Rhone, Corsica and Adriatic), were analyzed for two mitochondrial genes and six microsatellite loci. Results confirm the Mediterranean origin of A. fallax caught in the Ebro and reveal that it carries some genetic variation typical of Allis shad (A. alosa), suggesting historical introgression between these two closely related species. In addition, the A. fallax population from the Ebro presents a unique genetic composition and unexpectedly high levels of genetic diversity, when compared with the other Mediterranean populations analyzed. These findings raise important doubts on the demographic history of this population and underline the need for further studies to disentangle natural population dynamics from the role of anthropogenic factors on abrupt population fluctuations such as those reported here. The puzzling demographic history of A. fallax from the Ebro not only brings some hope for the recovery of similarly endangered populations but also provides a unique opportunity to study the factors underlying species’ persistence capacity when facing changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexandrino P, Faria R, Linhares D, Castro F, Le Corre M, Sabatié R, Baglinière JL, Weiss S (2006) Interspecific differentiation and intraspecific substructure in two closely related clupeids with extensive hybridisation, Alosa alosa and Alosa fallax. J Fish Biol 69:242–259

    Article  CAS  Google Scholar 

  • Andree KB, López MA, Alexandrino P, Faria R, Gisbert E (2011) A preliminary genetic analysis of a recently rediscovered population of twaite shad (Alosa fallax) in the Ebro river, Spain (Western Mediterranean). J Appl Ichthyol 27(Suppl. 3):21–23

    Article  Google Scholar 

  • Aparicio E, Pintor C, Durán C, Carmona-Catot G (2012) Fish passage assessment at the most downstream barrier of the Ebro River (NE Iberian Peninsula). Limnetica 31:37–46

    Google Scholar 

  • Aparicio E, Vargas MJ, Olmo JM, de Sostoa A (2000) Decline of native freshwater fishes in a Mediterranean watershed on the Iberian Peninsula: a quantitative assessment. Environ Biol Fish 59:11–19

    Article  Google Scholar 

  • Aprahamian MW, Aprahamian CD, Baglinière JL, Sabatié MR, Alexandrino P (2003) Alosa alosa and Alosa fallax spp.: literature review and bibliography. R&D Technical Report W1-014/TR. Environment Agency, Bristol

  • Aprahamian MW, Aprahamian CD, Knights AM (2010) Climate change and the green energy paradox: the consequences for twaite shad Alosa fallax from the River Severn, UK. J Fish Biol 77:1912–1930

    Article  PubMed  CAS  Google Scholar 

  • Baglinière JL (2000) Le genre Alosa sp. In: Baglinière JL, Elie P (eds) Les aloses Alosa alosa et Alosa fallax spp. INRA-Cemagref, Paris, pp 1–32

    Google Scholar 

  • Bálint M, Málnás K, Nowak C, Geismar J, Váncsa É, Polyák L, Lengyel S, Haase P (2012) Species history masks the effects of human-induced range loss - unexpected genetic diversity in the endangered giant mayfly Palingenia longicauda. PLoS One 7:e31872

    Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  • Belliard J, Marchal J, Ditche JM, Tales E, Sabatié R, Baglinière JL (2009) Return of anadromous allis shad (Alosa alosa L.) in the River Seine, France: a sign of river recovery? River Res Appl 25:788–794

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II

  • Benjamini Y, Yekutieli D (2001) The control of false discovery rate under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Boisneau P, Mennesson-Boisneau C, Guyomard R (1992) Electrophoretic identity between allis shad, Alosa alosa (L.), and twaite shad, A. fallax (Lacepede). J Fish Biol 40:731–738

    Article  Google Scholar 

  • Boisneau C, Moatar F, Bodin M, Boisneau Ph (2008) Does global warming impact on migration patterns and recruitment of Allis shad (Alosa alosa L.) young of the year in the Loire River, France? Hydrobiologia 602:179–186

    Article  Google Scholar 

  • Castelnaud G, Rochard E, Le Gat Y (2001) Abundance trend analysis of the allis shad Alosa alosa in the Gironde basin during the 1977–1998 period on the basis of estimated fishing indicators. B Fr Peche Piscic 362/363:989–1015

    Google Scholar 

  • Chapman RW, Patton JC, Eleby B (1994) Comparisons of mitochondrial DNA variation in four alosid species as revealed by the total genome, the NADH dehydrogenase I and cytochrome b regions. In: Beaumont A (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp 249–263

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  PubMed Central  Google Scholar 

  • Coscia I, Rountree V, King JJ, Roche WK, Mariani S (2010) A highly permeable species boundary between two anadromous fishes. J Fish Biol 77:1137–1149

    Article  PubMed  CAS  Google Scholar 

  • Cushman E, Tarpey C, Post B, Ware K, Darden T (2012) Genetic characterization of American shad in the Edisto River, South Carolina, and initial evaluation of an experimental stocking program. T Am Fish Soc 141:1338–1348

    Article  Google Scholar 

  • Douchement C (1981) Les aloses des fleuves français Alosa fallax (Lacépède, 1803) et Alosa alosa (Linné, 1758). Biométrie, ecobiologie, autonomie des populations. PhD thesis, U.S.T.L. Montpellier

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed Central  Google Scholar 

  • Faria R, Weiss S, Alexandrino P (2006) A molecular phylogenetic perspective on the evolutionary history of Alosa spp. (Clupeidae). Mol Phylogenet Evol 40:298–304

    Article  PubMed  CAS  Google Scholar 

  • Faria R, Weiss S, Alexandrino P (2012) Comparative phylogeography and demographic history of European shads (Alosa spp.) inferred from mitochondrial DNA. BMC Evol Biol 12:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Faria R, Wellgner B, Weiss S, Alexandrino P (2004) Isolation and characterization of eight di-nucleotide microsatellite loci from two closely related clupeid species (Alosa alosa and A. fallax). Mol Ecol Notes 4:586–588

    Article  CAS  Google Scholar 

  • Freyhof J, Brooks E (2011) European red list of freshwater fishes. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  CAS  PubMed Central  Google Scholar 

  • Funk DJ, Omland KE (2003) Species level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hasselman DJ, Bradford RG, Bentzen P (2010) Taking stock: defining populations of American shad (Alosa sapidissima) in Canada using neutral genetic markers. Can J Fish Aquat Sci 67:1021–1039

    Article  CAS  Google Scholar 

  • Hasselman DJ, Ricard D, Bentzen P (2013) Genetic diversity and differentiation in a wide ranging anadromous fish, American shad (Alosa sapidissima), is correlated with latitude. Mol Ecol 22:1558–1573

    Article  PubMed  Google Scholar 

  • Hauser L, Adcock GJ, Smith PJ, Bernal Ramírez JH, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc Natl Acad Sci USA 99:11742–11747

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362

    Article  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakobsson M, Rosenberg N (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Jolly MT, Maitland PS, Genner MJ (2011) Genetic monitoring of two decades of hybridization between allis shad (Alosa alosa) and twaite shad (Alosa fallax). Conserv Genet 12:1087–1100

    Article  Google Scholar 

  • Jolly MT, Aprahamian MW, Hawkins SJ, Henderson PA, Hillman R, O’Maoiléidigh N, Maitland PS, Piper R, Genner MJ (2012) Population genetic structure of protected allis shad (Alosa alosa) and twaite shad (Alosa fallax). Mar Biol 159:581–583

    Article  Google Scholar 

  • Julian SE, Bartron ML (2007) Microsatellite DNA markers for American shad (Alosa sapidissima) and cross-species amplification within the family Clupeidae. Mol Ecol Notes 7:805–807

    Article  CAS  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • King JJ, Roche WK (2008) Aspects of anadromous Allis shad (Alosa alosa Linnaeus) and twaite shad (Alosa fallax Lacépède) biology in four Irish Special Areas of Conservation (SACs): status spawning indications and implications for conservation designation. Hydrobiologia 602:145–154

    Article  Google Scholar 

  • Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701

    Article  PubMed  CAS  Google Scholar 

  • Lebel I, Menella JY, Le Corre M (2001) Balance sheet of the migratory fish program actions for the twaite shad population (Alosa fallax rhodanensis) on the Rhone-Mediterranean–Corsica basin. B Fr Peche Piscic 362/363:1077–1100

    Google Scholar 

  • Le Corre M, Alexandrino P, Sabatié MR, Aprahamian MW, Baglinière JL (2005) Genetic characterisation of the Rhodanian twaite shad, Alosa fallax rhodanensis. Fish Manag Ecol 12:275–282

    Article  Google Scholar 

  • Limburg KE, Waldman JR (2009) Dramatic declines in North Atlantic diadromous fishes. Bio Sci 59:955–965

    Google Scholar 

  • Lobón-Cerviá J (2009) Why, when and how do fish populations decline, collapse and recover? The example of brown trout (Salmo trutta) in Rio Chaballos (northwestern Spain). Freshw Biol 54:1149–1162

    Google Scholar 

  • López MA, Andree KB, Sánchez R, Queral JM, Franch N, Schneider P, Gisbert E (2011) First characterization of the spawning habitat and mating behaviour of twaite shad in the Ebro River (Western Mediterranean). J Appl Ichthyol 27(Suppl. 3):53–55

    Article  Google Scholar 

  • López MA, Gázquez N, Olmo-Vidal JM, Aprahamian M, Gisbert E (2007) The presence of the anadromous twaite shad (Alosa fallax) in the Ebro River (Western Mediterranean, Spain): an indicator of population’s recovery? J Appl Ichthyol 23:163–166

    Article  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JB (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809

    Article  PubMed  CAS  Google Scholar 

  • Lozano-Rey L (1929) Los clupeidos de la península Ibérica y del Rif. Mem R Soc Esp Hist Nat 15:647–666

    Google Scholar 

  • Lozano-Rey L (1935) Los peces fluviátiles de España. Mem Acad Cienc Exact Fisic Nat 5:1–390

    Google Scholar 

  • Maceda-Veiga A, Monleon-Getino A, Caiola N, Casals F, de Sostoa A (2010) Changes in fish assemblages in catchments in north-eastern Spain: biodiversity, conservation status and introduced species. Freshw Biol 55:1734–1746

    Google Scholar 

  • Maes J, Stevens M, Breine J (2008) Poor water quality constrains the distribution and movements of twaite shad Alosa fallax fallax (Lacépède, 1803) in the watershed of river Scheldt. Hydrobiologia 602:129–143

    Article  Google Scholar 

  • Maitland PS, Lyle AA (2005) Ecology of allis shad Alosa alosa and twaite shad Alosa fallax in the Solway Firth, Scotland. Hydrobiologia 534:205–221

    Article  Google Scholar 

  • Narum S (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787

    Article  CAS  Google Scholar 

  • Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet): a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Bioinformatics 24:581–583

    Article  PubMed  CAS  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  PubMed  Google Scholar 

  • Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson SJ, Vasquez-Carrillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418

    Article  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure from multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reyjol Y, Hugueny B, Pont D, Bianco PG, Beier U, Caiola N, Casals F, Cowx I, Economou A, Ferreira T, Haidvogl G, Noble R, Sostoa A, Vigneron T, Virbickas T (2007) Patterns in species richness and endemism of European freshwater fish. Glob Ecol Biogeogr 16:65–75

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg N (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rougier T, Lambert P, Drouineau H, Girardin M, Castelnaud G, Carry L, Aprahamianm M, Rivot E, Rochard E (2012) Collapse of allis shad, Alosa alosa, in the Gironde system (southwest France): environmental change, fishing mortality, or Allee effect? ICES J Mar Sci 69:1802–1811

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Sabatié MR, Baglinière JL (2001) Some ecobiological traits in Morrocan shads: a cultural and socio-economic value interest which has disappeared. B Fr Peche Piscic 362/363:903–917

    Google Scholar 

  • Sabatié MR, Baglinière JL, Boisneau P (2004) Shad of the Northeastern Atlantic and the Western Mediterranean (Alosa alosa L. 1758 and A. fallax Lac., 1803): biology, ecology and harvesting - fisheries and aquaculture. In: UNESCO, United Nations Educational Scientific and Cultural Organization - (FRA), Encyclopedia of Life Support Systems (EOLSS on line). Food and Agricultural Sciences, Engineering and Technology Resources. Eolss Publishers, Oxford, pp 1–19

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, New York

    Google Scholar 

  • Sostoa A, Sostoa FJ (1979) Notas sobre la ictiofauna continental del Delta del Ebro (NE de la Peninsula Iberica). Miscellan Zool 5:178–179

    Google Scholar 

  • Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Soc 29:344–358

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thiel R, Riel P, Neumann R, Winkler HM, Böttcher U, Gröhsler T (2008) Return of twaite shad Alosa fallax (Lacépède, 1803) to the Southern Baltic Sea and the transitional area between the Baltic and North Seas. Hydrobiologia 602:161–177

    Article  Google Scholar 

  • Toews DPL, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 21:3907–3930

    Article  PubMed  CAS  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Villesen P (2007) FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 7:965–968

    Article  CAS  Google Scholar 

  • Vonlanthen P, Bittner D, Hudson AG, Young KA, Müller R, Lundsgaard-Hansen B, Roy D, Di Piazza S, Largiader CR, Seehausen O (2012) Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:357–362

    Article  PubMed  CAS  Google Scholar 

  • Waters JM, Epifanio JM, Gunter T, Brown BL (2000) Homing behaviour facilitates subtle genetic differentiation among river populations of Alosa sapidissima: microsatellites and mtDNA. J Fish Biol 52:622–636

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

Download references

Acknowledgments

This study was primarily funded by the Institut de Recerca i Tecnologia Agroalimentàries (IRTA) and the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (ACOM 2007-00063; Generalitat de Catalunya) and partially financed by the FCT project PTDC/BIA-BEC/105447/2008 and the EU Project, Atlantic Area Programme, AARC—Atlantic Aquatic Resources Conservation, nº 2009-1/079. R. F. was funded through PhD and post-doctoral grants (SFRH/BD/4619/2001 and SFRH/BPD/26384/2006, respectively) supported by FCT under the Programa Operacional Potencial Humano—Quadro de Referência Estratégico Nacional funds from the European Social Fund and Portuguese Ministério da Educação e Ciência. Additional financial support to R. F. and G. S. was given by the Universitat Pompeu Fabra (UPF, Spain). Thanks to P. Jatteau, J. L. Baglinière, J. Y. Menella, M. Le Corre, M. R. Sabatié and I. Celić for providing samples. Thanks to A. Navarro for allowing us to do part of this work at Institut de Biologia Evolutiva (IBE)—Universitat Pompeu Fabra (UPF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karl B. Andree or Rui Faria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotelo, G., Andree, K.B., López, M.A. et al. The puzzling demographic history and genetic differentiation of the twaite shad (Alosa fallax) in the Ebro River. Conserv Genet 15, 1037–1052 (2014). https://doi.org/10.1007/s10592-014-0597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0597-9

Keywords

Navigation