Skip to main content

Advertisement

Log in

Within-river gene flow in the hellbender (Cryptobranchus alleganiensis) and implications for restorative release

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Understanding how populations are genetically and demographically connected is beneficial for species management, since gene flow and dispersal contribute to genetic diversity and population persistence. For hellbenders (Cryptobranchus alleganiensis), an aquatic salamander species experiencing dramatic declines in population size, fine-scale (i.e. within river) patterns of genetic diversity and gene flow are not well understood. Previous findings indicate that hellbenders are habitat specialists that exhibit extreme site fidelity and low vagility, suggesting that gene flow is restricted among the several, discrete habitat patches within a river. Using 15 polymorphic microsatellite loci and 497 hellbender samples from four Missouri rivers, we assessed fine-scale patterns of genetic diversity in order to infer population connectivity and aid in population management. Results indicate moderate levels of genetic variation (HO = 0.66–0.78) with little differentiation among habitat patches (avg. FST = 0.002) and no evidence of isolation by distance. Our data suggest that hellbender gene flow has been extensive even among habitat patches separated by distances greater than >100 km. These results are useful for hellbender management, especially in terms of making informed decisions regarding restorative releases of captively propagated individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinform 9(1):323

    Article  Google Scholar 

  • Bodinof C (2010) Translocation and conservation of hellbenders (Cryptobranchus alleganiensis) in Missouri. Thesis, University of Missouri, Columbia

  • Bodinof CM, Briggler JT, Junge RE, Beringer J, Wanner MD, Schuette CD, Ettling J, Gitzen RA, Millspaugh JJ (2012a) Postrelease movements of captive-reared Ozark hellbenders (Cryptobranchus alleganiensis bishopi). Herpetologica 68(2):160–173. doi:10.1655/herpetologica-d-11-00033.1

    Article  Google Scholar 

  • Bodinof CM, Briggler JT, Junge RE, Beringer J, Wanner MD, Schuette CD, Ettling J, Millspaugh JJ (2012b) Habitat attributes associated with short-term settlement of Ozark hellbender (Cryptobranchus alleganiensis bishopi) salamanders following translocation to the wild. Freshw Biol 57(1):178–192. doi:10.1111/j.1365-2427.2011.02697.x

    Article  Google Scholar 

  • Briggler JT, Larson KA, Irwin KJ (2008) Presence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis) on hellbenders (Cryptobranchus alleganiensis) in the Ozark Highlands. Herpetol Rev 39:443–444

    Google Scholar 

  • Briggler JT, Crabill TL, Irwin KJ, Davidson C, Civiello JA, Wanner MD, Schuette CD, Armstrong SL, Grant V, Davidson T, Ettling JA (2012) Propagation, augmentation, and reintroduction plan for the Ozark Hellbender (Cryptobranchus alleganiensis bishopi). Ozark Hellbender Propagation Committee, Jefferson City

    Google Scholar 

  • Bruce RC (1985) Larval periods, population structure and the effects of stream drift in larvae of the salamanders Desmognathus quadramaculatus and Leurognathus marmoratus in a Southern Appalachian stream. Copeia 1985(4):847–854. doi:10.2307/1445232

    Article  Google Scholar 

  • Bruce RC (1986) Upstream and downstream movements of Eurycea bislineata and other salamanders in a Southern Appalachian stream. Herpetologica 42(2):149–155. doi:10.2307/3892380

    Google Scholar 

  • Burgmeier NG, Sutton TM, Williams RN (2011a) Spatial ecology of the Eastern hellbender (Cryptobranchus alleganiensis alleganiensis) in Indiana. Herpetologica 67(2):135–145. doi:10.1655/herpetologica-d-10-00027.1

    Article  Google Scholar 

  • Burgmeier NG, Unger SD, Sutton TM, Williams RN (2011b) Population status of the Eastern hellbender (Cryptobranchus alleganiensis alleganiensis) in Indiana. J Herpetol 45(2):195–201. doi:10.1670/10-094.1

    Article  Google Scholar 

  • Cano JM, Laurila A, Palo J, Merila J (2004) Population differentiation in G matrix structure due to natural selection in Rana Temporaria. Evolution 58(9):2013–2020

    Article  PubMed  Google Scholar 

  • Coatney CE (1982) Home range and nocturnal activity of the Ozark hellbender. Thesis, Southwest Missouri State University, Springfield

  • Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crowhurst R, Faries K, Collantes J, Briggler J, Koppelman J, Eggert L (2011) Genetic relationships of hellbenders in the Ozark highlands of Missouri and conservation implications for the Ozark subspecies (Cryptobranchus alleganiensis bishopi). Conserv Genet 12(3):637–646. doi:10.1007/s10592-010-0170-0

    Article  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91(8):3166–3170

    Article  PubMed Central  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4(2):359–361

    Article  Google Scholar 

  • Estoup A, Rousset F, Michalakis Y, Cornuet JM, Adriamanga M, Guyomard R (1998) Comparative analysis of microsatellite and allozyme markers: a case study investigating micorgeographic differentiation in brown trout (Salmo trutta). Mol Ecol 7(3):339–353

    Article  CAS  PubMed  Google Scholar 

  • Ettling JA, Wanner MD, Schuette CD, Armstrong SL, Pedigo AS, Briggler JT (2013) Captive reproduction and husbandry of adult Ozark hellbenders Cryptobranchus alleganiensis bishopi. Herpetol Rev 44(4):604–610

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol Res 10(3):564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  • Ferguson H (1998) Demography, dispersal, and colonisation of larvae of Pacific giant salamanders (Dicamptodon tenebrosus) at the northern extent of their range. Thesis, University of British Columbia, Vancouver

  • Fobes TM (1995) Habitat analysis of the Ozark hellbender, Cryptobranchus alleganiensis bishopi, in Missouri. Thesis, Southwest Missouri State University, Springfield

  • Foster RL, McMillan AM, Roblee KJ (2009) Population status of hellbender salamanders (Cryptobranchus alleganiensis) in the Allegheny River drainage of New York State. J Herpetol 43(4):579–588. doi:10.1670/08-156.1

    Article  Google Scholar 

  • Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–327

    Article  CAS  PubMed  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10(12):2741–2752. doi:10.1046/j.0962-1083.2001.01411.x

    Article  CAS  PubMed  Google Scholar 

  • Gall BG, Mathis A (2010) Innate predator recognition and the problem of introduced trout. Ethology 116:47–58

    Article  Google Scholar 

  • Gates JE, Hocutt CH, Stauffer JR Jr, Taylor GJ (1985a) The distribution and status of Cryptobranchus alleganiensis in Maryland. Herpetol Rev 16:17–18

    Google Scholar 

  • Gates JE, Stouffer RH Jr, Stauffer JR Jr, Hocutt CH (1985b) Dispersal patterns of translocated Cryptobranchus alleganiensis in a Maryland stream. J Herpetol 19(3):436–438. doi:10.2307/1564279

    Article  Google Scholar 

  • Gomez-Mestre I, Tejedo M (2004) Contrasting patterns of qualitative and neutral genetic variation in locally adapted populations of the natterjack toad Bufo calamita. Evolution 58(10):2343–2352

    Article  CAS  PubMed  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22(7):1–19

    Google Scholar 

  • Hangartner S, Laurila A, Räsänen K (2011) Adaptive divergence in moor frog (Rana arvalis) populations along an acidification gradient: Influences from QST to FST correlations. Evolution 66:867–881

    Article  PubMed  Google Scholar 

  • Humphries WJ (2005) Cryptobranchus alleganiensis displacement by a flood. Herpetol Rev 36(4):428

    Google Scholar 

  • Johnson JE, Goldberg AS (1975) Movement of larval two lined salamanders (Eurycea bislineata) in the Mill River, Massachusetts. Copeia 3:588–589. doi:10.2307/1443669

    Article  Google Scholar 

  • Johnson J, Faries K, Rabenold J, Crowhurst R, Briggler J, Koppelman J, Eggert L (2009) Polymorphic microsatellite loci for studies of the Ozark hellbender (Cryptobranchus alleganiensis bishopi). Conserv Genet 10(6):1795–1797. doi:10.1007/s10592-009-9818-z

    Article  CAS  Google Scholar 

  • Jombart T (2000) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  Google Scholar 

  • Kalinowski ST (2005) Hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5(1):187–189. doi:10.1111/j.1471-8286.2004.00845.x

    Article  CAS  Google Scholar 

  • Keitzer SC (2007) Habitat preferences of the eastern hellbender in West Virginia. Thesis, Marshall University, Huntington

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49(4):725–738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA 75(6):2868–2872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuo C-H, Janzen FJ (2004) Genetic effects of a persistent bottleneck on a natural population of ornate box turtles (Terrapene ornata). Conserv Genet 5(4):425–437. doi:10.1023/b:coge.0000041020.54140.45

    Article  CAS  Google Scholar 

  • Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19(19):4179–4191. doi:10.1111/j.1365-294X.2010.04808.x

    Article  Google Scholar 

  • Latch E, Dharmarajan G, Glaubitz J, Rhodes O (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7(2):295–302

    Article  Google Scholar 

  • Leinonen T, O’Hara RB, Cano JM, Merila J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21(1):1–17

    CAS  PubMed  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17(4):183–189

    Article  Google Scholar 

  • Lippe C, Dumont P, Bernatchez L (2006) High genetic diversity and no inbreeding in the endangered copper redhorse, Moxostoma hubbsi (Catostomidae, Pisces): the positive sides of a long generation time. Mol Ecol 15(7):1769–1780. doi:10.1111/j.1365-294X.2006.02902.x

    Article  CAS  PubMed  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19(15):3038–3051. doi:10.1111/j.1365-294X.2010.04688.x

    Article  PubMed  Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12(1):228–237

    Article  Google Scholar 

  • Lynch M (1996) A quantitative genetic perspective on conservation issues. In: Avise J, Hamrick J (eds) Conservation genetics: case histories from nature. Chapman & Hall, New York, pp 471–501

    Chapter  Google Scholar 

  • Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14(6):892–903

    Article  Google Scholar 

  • Nei M, Chakravarti A (1977) Drift variances of FST and GST statistics obtained from a finite number of isolated populations. Theor Popul Biol 11:307–325

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29(1):1–10. doi:10.2307/2407137

    Article  Google Scholar 

  • Nickerson MA, Mays CE (1973) A study of the Ozark hellbender Cryptobranchus alleganiensis bishopi. Ecology 54(5):1164–1165. doi:10.2307/1935586

    Article  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4(3):347–354. doi:10.1111/j.1365-294X.1995.tb00227.x

    Article  CAS  PubMed  Google Scholar 

  • Palo JU, O’Hara RB, Laugen T, Laurila A, Primmers CR, Merila J (2003) Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data. Mol Ecol 12(7):1963–1978

    Article  CAS  PubMed  Google Scholar 

  • Peakall ROD, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Peterson CL (1987) Movement and catchability of the hellbender, Cryptobranchus alleganiensis. J Herpetol 21(3):197–204

    Article  Google Scholar 

  • Peterson CL, Wilkinson RF (1996) Home range size of the hellbender (Cryptobranchus alleganiensis) in Missouri. Herpetol Rev 27(3):126–127

    Google Scholar 

  • Peterson CL, Wilkinson RF Jr, Milton ST, Metter DE (1983) Age and growth of the Ozark hellbender (Cryptobranchus alleganiensis bishopi). Copeia 1:225–231

    Article  Google Scholar 

  • Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Petranka JW, Sih A (1986) Environmental instability, competition, and density-dependent growth and survivorship of a stream-dwelling salamander. Ecology 67(3):729–736. doi:10.2307/1937696

    Article  Google Scholar 

  • Petranka JW, Sih A, Kats LB, Holomuzki JR (1987) Stream drift, size-specific predation, and the evolution of ovum size in an amphibian. Oecologia 71(4):624–630. doi:10.2307/4218213

    Article  Google Scholar 

  • Pfingsten RA (1989) The status and distribution of the hellbender, Cryptobranchus alleganiensis, Ohio. Ohio J Sci 89(2):3

    Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reduction in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pittman S, King T, Faurby S, Dorcas M (2011) Demographic and genetic status of an isolated population of bog turtles (Glyptemys muhlenbergii): implications for managing small populations of long-lived animals. Conserv Genet 12(6):1589–1601. doi:10.1007/s10592-011-0257-2

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quinn SA, Gibbs JP, Hall MH, Petokas PJ (2013) Multiscale factors influencing distribution of the eastern hellbender salamander (Cryptobranchus alleganiensis alleganiensis) in the northern segment of its range. J Herpetol 47(1):78–84. doi:10.1670/11-127

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17(1):230–237. doi:10.1046/j.1523-1739.2003.01236.x

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43(1):223–225

    Article  Google Scholar 

  • Richter-Boix A, Quintela M, Kierczak M, Franch M, Laurila A (2013) Fine-grained adaptive divergence in an amphiban: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands. Mol Ecol 22:1322–1340

    Article  CAS  PubMed  Google Scholar 

  • Ross KG, Shoemaker DD, Krieger MJB, DeHeer CJ, Keller L (1999) Assessing genetic structure with multiple classes of molecular markers: a case study involving the introduced fire ant Solenopsis invicta. Mol Biol Evol 16(4):525–543

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Res 8(1):103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  Google Scholar 

  • Routman E (1993) Mitochondrial DNA variation in Cryptobranchus alleganiensis, a salamander with extremely low allozyme diversity. Copeia 2:407–416

    Article  Google Scholar 

  • Sabatino S, Routman E (2009) Phylogeography and conservation genetics of the hellbender salamander (Cryptobranchus alleganiensis). Conserv Genet 10(5):1235–1246. doi:10.1007/s10592-008-9655-5

    Article  Google Scholar 

  • Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manage 72(1):260–267. doi:10.2193/2007-082

    Article  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236(4803):787–792. doi:10.1126/science.3576198

    Article  CAS  PubMed  Google Scholar 

  • Smith BG (1907) The life history and habits of Cryptobranchus alleganiensis. Biol Bull 13:5–39

    Article  Google Scholar 

  • Stoneburner DL (1978) Salamander drift. Freshw Biol 8(3):291–293. doi:10.1111/j.1365-2427.1978.tb01450.x

    Article  Google Scholar 

  • Storfer A (1999) Gene flow and endangered species translocations: a topic revisited. Biol Conserv 87:173–180

    Article  Google Scholar 

  • Taber CA, Wilkinson RF Jr, Milton ST (1975) Age and growth of hellbenders in the Niangua River, Missouri. Copeia 4:633–639

    Article  Google Scholar 

  • Templeton AR, Shaw K, Routman E, Davis SK (1990) The genetic consequences of habitat fragmentation. Ann Missouri Bot Gard 77(1):13–27

    Article  Google Scholar 

  • Thiesmeier B, Schuhmacher H (1990) Causes of larval drift of the fire salamander, Salamandra salamandra terrestris, and its effects on population dynamics. Oecologia 82(2):259–263. doi:10.2307/4219231

    Article  Google Scholar 

  • Topping MS, Peterson CL (1985) Movement in the hellbender, Cryptobranchus alleganiensis. Trans Missouri Acad Sci 19:121

    Google Scholar 

  • Trauth SE, Wilhide JD, Daniel P (1992) Status of the Ozark hellbender, Cryptobranchus bishopi (Urodela: Cryptobranchidae), in the Spring River, Fulton County, Arkansas. Arkansas Acad Sci 46:83–85

    Google Scholar 

  • Unger S, Fike J, Sutton T, Rhodes O, Williams R (2010) Isolation and development of 12 polymorphic tetranucleotide microsatellite markers for the eastern hellbender (Cryptobranchus alleganiensis alleganiensis). Conserv Genet Res 2(1):89–91. doi:10.1007/s12686-009-9170-0

    Article  Google Scholar 

  • Unger SD, Rhodes OE, Sutton TM, Williams RN (2013) Population genetics of the eastern hellbender (Cryptobranchus alleganiensis alleganiensis) across multiple spatial scales. PLoSONE 8(10):e74180. doi:10.1371/journal.pone.0074180

    Article  CAS  Google Scholar 

  • USFWS (U.S. Fish and Wildlife Service) (2011) Endangered and threatened wildlife and plants; endangered status for the Ozark hellbender salamander. Fed Reg 76(194):61956–61978

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Vineyard JD, Feder GL (1974) Springs of Missouri. Missouri Geological Survey and Water Resources, Rolla

    Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: Cautions and guidelines. Mol Ecol 10(1):249–256. doi:10.1046/j.1365-294X.2001.01185.x

    Article  CAS  PubMed  Google Scholar 

  • Wang J (2007) Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet Res 89(03):135–153. doi:10.1017/S0016672307008798

    Article  CAS  PubMed  Google Scholar 

  • Wang J (2011) Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Res 11(1):141–145. doi:10.1111/j.1755-0998.2010.02885.x

    Article  Google Scholar 

  • Wheeler BA, Prosen E, Mathis A, Wilkinson RF (2003) Population declines of a long-lived salamander: A 20+-year study of hellbenders, Cryptobranchus alleganiensis. Biol Conserv 109(1):151–156. doi:10.1016/s0006-3207(02)00136-2

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28(2):114–138

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Missouri Department of Conservation. Samples were collected by Jeffery T. Briggler of the Missouri Department of Conservation under the authority of the Wildlife Code of Missouri. Aaron Schuh provided lab assistance for which we are grateful. Many thanks to William E. Peterman, Mari Jose Ruiz-Lopez, and Raymond D. Semlitsch for their valuable advice and suggestions for revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheena M. Feist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feist, S.M., Briggler, J.T., Koppelman, J.B. et al. Within-river gene flow in the hellbender (Cryptobranchus alleganiensis) and implications for restorative release. Conserv Genet 15, 953–966 (2014). https://doi.org/10.1007/s10592-014-0591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0591-2

Keywords

Navigation