Skip to main content
Log in

State-defect constraint pairing graph coarsening method for Karush–Kuhn–Tucker matrices arising in orthogonal collocation methods for optimal control

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A state-defect constraint pairing graph coarsening method is described for improving computational efficiency during the numerical factorization of large sparse Karush–Kuhn–Tucker matrices that arise from the discretization of optimal control problems via an Legendre–Gauss–Radau orthogonal collocation method. The method takes advantage of the particular sparse structure of the Karush–Kuhn–Tucker matrix that arises from the orthogonal collocation method. The state-defect constraint pairing graph coarsening method pairs each component of the state with its corresponding defect constraint and forces paired rows to be adjacent in the reordered Karush–Kuhn–Tucker matrix. Aggregate state-defect constraint pairing results are presented using a wide variety of benchmark optimal control problems where it is found that the proposed state-defect constraint pairing graph coarsening method significantly reduces both the number of delayed pivots and the number of floating point operations and increases the computational efficiency by performing more floating point operations per unit time. It is then shown that the state-defect constraint pairing graph coarsening method is less effective on Karush–Kuhn–Tucker matrices arising from Legendre–Gauss–Radau collocation when the optimal control problem contains state and control equality path constraints because such matrices may have delayed pivots that correspond to both defect and path constraints. An alternate graph coarsening method that employs maximal matching is then used to attempt to further reduce the number of delayed pivots. It is found, however, that this alternate graph coarsening method provides no further advantage over the state-defect constraint pairing graph coarsening method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization. Comput. Chem. Eng. 33(3), 575–582 (2009)

    Article  Google Scholar 

  3. Duff, I.S., Reid, J.K.: MA47, A Fortran Code for Direct Solution of Indefinite Sparse Symmetric Linear Systems. Report RAL, pp. 95–001 (1995)

  4. Duff, I.S.: MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM Trans. Math. Softw. 30(2), 118–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y., Koster, J.: MUMPS: A General Purpose Distributed Memory Sparse Solver. Springer, Heidelberg (2001)

    Google Scholar 

  6. Schenk, O., Gärtner, K.: Two-level dynamic scheduling in PARDISO: improved scalability on shared memory multiprocessing systems. Parallel Comput. 28(2), 187–197 (2002)

    Article  MATH  Google Scholar 

  7. Elnagar, G., Kazemi, M., Razzaghi, M.: The pseudospectral legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40(10), 1793–1796 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elnagar, G., Razzaghi, M.: A collocation-type method for linear quadratic optimal control problems. Optim. Control Appl. Methods 18(3), 227–235 (1998)

    Article  MathSciNet  Google Scholar 

  9. Fahroo, F., Ross, I.M.: Costate estimation by a legendre pseudospectral method. J. Guidance Control Dyn. 24(2), 270–277 (2001)

    Article  Google Scholar 

  10. Fahroo, F., Ross, I.M.: Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guidance Control Dyn. 25(1), 160–166 (2002)

    Article  Google Scholar 

  11. Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., Rao, A.V.: Direct trajectory optimization and costate estimation via an orthogonal collocation method. J Guidance Control Dyn. 29(6), 1435–1440 (2006)

    Article  Google Scholar 

  12. Huntington, G.T., Benson, D.A., Rao, A.V.: Optimal configuration of tetrahedral spacecraft formations. J. Astronaut. Sci. 55(2), 141–169 (2007)

    Article  Google Scholar 

  13. Huntington, G.T., Rao, A.V.: Optimal reconfiguration of spacecraft formations using the Gauss pseudospectral method. J Guidance Control Dyn. 31(3), 689–698 (2008)

    Article  Google Scholar 

  14. Gong, Q., Fahroo, F., Ross, I.M.: Spectral algorithm for pseudospectral methods in optimal control. J Guidance Control Dyn. 31(3), May–June (2008)

  15. Gong, Q., Ross, I.M., Kang, W., Fahroo, F.: Connections between the covector mapping theorem and convergence of pseudospectral methods. Comput. Optim. Appl. 41(3), 307–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rao, A.V., Benson, D.A., Darby, C.L., Francolin, C., Patterson, M.A., Sanders, I., Huntington, G.T.: Algorithm 902: GPOPS, a matlab software for solving multiple-phase optimal control problems using the Gauss pseudospectral method. ACM Trans. Math. Softw. 37(2), Article 22, 39 pp., April–June (2010)

  17. Darby, C.L., Hager, W.W., Rao, A.V.: An \(hp\)-adaptive pseudospectral method for solving optimal control problems. Optim. Control Appl. Methods 32(4), 476–502 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Darby, C.L., Hager, W.W., Rao, A.V.: Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J. Spacecr. Rockets 48(3), 433–445 (2011)

    Article  Google Scholar 

  19. Kameswaran, S., Biegler, L.T.: Convergence rates for direct transcription of optimal control problems using collocation at radau points. Comput. Optim. Appl. 41(1), 81–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garg, D., Patterson, M.A., Darby, C.L., Francolin, C., Huntington, G.T., Hager, W.W., Rao, A.V.: Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems via a radau pseudospectral method. Comput. Optim. Appl. 49(2), 335–358 (2011). doi:10.1007/s10589-00-09291-0

    Article  MathSciNet  MATH  Google Scholar 

  21. Garg, D., Patterson, M.A., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11), 1843–1851 (2010). doi:10.1016/j.automatica.2010.06.048

    Article  MathSciNet  MATH  Google Scholar 

  22. Garg, D., Hager, W.W., Rao, A.V.: Pseudospectral methods for solving infinite-horizon optimal control problems. Automatica 47(4), 829–837 (2011). doi:10.1016/j.automatica.2011.01.085

    Article  MathSciNet  MATH  Google Scholar 

  23. Patterson, M.A., Rao, A.V.: GPOPS- II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 41(1), 1:1–1:37 (2014)

    Article  MathSciNet  Google Scholar 

  24. Patterson, M.A., Hager, W.W., Rao, A.V.: A \(ph\) mesh refinement method for optimal control. Optim. Control Appl. Methods 36(4), 398–421 (2015). doi:10.1002/oca2114

  25. Francolin, C.C., Hager, W.W., Rao, A.V.: Costate approximation in optimal control using integral Gaussian quadrature collocation methods. Optim. Control Appl. Methods 36(4), 381–397 (2015). doi:10.1002/oca2112

  26. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pothen, A., Simon, H.D., Wang, L., Barnard, S.T.: Towards a fast implementation of spectral nested dissection. In: Proceedings of the 1992 ACM/IEEE Conference on Supercomputing, pp. 42–51. IEEE Computer Society Press (1992)

  28. Pothen, A., Simon, H.D., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Miller, G.L., Teng, S.-H., Thurston, W., Vavasis, S.A.: Automatic Mesh Partitioning. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  30. Miller, G.L., Teng, S.-H., Vavasis, S.A.: A unified geometric approach to graph separators. In: Proceedings., 32nd Annual Symposium on Foundations of Computer Science, pp. 538–547. IEEE (1991)

  31. Cheng, C.-K., Wei, Y.-C.: An improved two-way partitioning algorithm with stable performance [VLSI]. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 10(12), 1502–1511 (1991)

    Article  Google Scholar 

  32. Hendrickson, B., Leland, R.W.: A Multi-level algorithm for partitioning graphs. SC 95, 28 (1995)

  33. Mansour, N., Ponnusamy, R., Choudhary, A., Fox, G.: Graph contraction for physical optimization methods: a quality-cost tradeoff for mapping data on parallel computers. In: Proceedings of the 7th International Conference on Supercomputing, pp. 1–10. ACM (1993)

  34. Cong, J., Shinnerl, J.R.: Multilevel Optimization in VLSICAD. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  35. Safro, I., Sanders, P., Schulz, C.: Advanced Coarsening Schemes for Graph Partitioning, Experimental Algorithms. Springer, Berlin (2012)

    Google Scholar 

  36. Word, D.P., Kang, J., Akesson, J., Laird, C.D.: Efficient parallel solution of large-scale nonlinear dynamic optimization problems. Comput. Optim. Appl. 59, 667–688 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Patterson, M.A., Rao, A.V.: Exploiting sparsity in direct collocation pseudospectral methods for solving optimal control problems. J. Spacecr. Rocket. 49(2), 364–377 (2012)

    Article  MathSciNet  Google Scholar 

  38. Nocedal, J., Overton, M.L.: Projected Hessian updating algorithms for nonlinearly constrained optimization. SIAM J. Numer. Anal. 22(5), 821–850 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sylvester, J.J.: XIX. A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares. Lond. Edinb. Dublin Philos. Magazine J. Sci. 4(23), 138–142 (1852)

    Google Scholar 

  40. Levenberg, K.: A method for the solution of certain problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    MathSciNet  MATH  Google Scholar 

  41. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Progr. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Duff, I.S., Reid, J.K.: MA27–a set of Fortran subroutines for solving sparse symmetric sets of linear equations. UKAEA Atomic Energy Research Establishment (1982)

  43. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear. ACM Trans. Math. Softw. (TOMS) 9(3), 302–325 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, J.W.: The multifrontal method for sparse matrix solution: theory and practice. SIAM Rev. 34(1), 82–109 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, vol. 19. SIAM Press, Philadelphia (2010)

    Book  MATH  Google Scholar 

  46. Zhao, Y.J.: Optimal patterns of glider dynamic soaring. Optim. Control Appl. Methods 25(2), 67–89 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Goddard, R.H.: A method of reaching extreme altitudes. Nature 105, 809–811 (1920)

    Article  Google Scholar 

  48. Ledzewicz, U., Schättler, H.: Analysis of optimal controls for a mathematical model of tumour anti-angiogenesis. Optim. Control Appl. Methods 29(1), 41–57 (2008)

    Article  MathSciNet  Google Scholar 

  49. Bryson, A.E.: Applied Optimal Control: Optimization, Estimation, and Control. CRC Press, New York (1975)

    Google Scholar 

  50. Bulirsch, R., Nerz, E., Pesch, H.J., von Stryk, O.: Combining Direct and Indirect Methods in Optimal Control: Range Maximization of a Hang Glider. Springer, Berlin (1993)

    MATH  Google Scholar 

  51. Sakawa, Y.: Trajectory planning of a free-flying robot by using the optimal control. Optim. Control Appl. Methods 20(5), 235–248 (1999)

    Article  MathSciNet  Google Scholar 

  52. Tinney, W.F., Walker, J.W.: Direct solutions of sparse network equations by optimally ordered triangular factorization. Proc. IEEE 55(11), 1801–1809 (1967)

    Article  Google Scholar 

  53. Davis, T.A., Amestoy, P., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  54. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10(2), 345–363 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  55. Gibbs, N.E., Poole Jr, W.G., Stockmeyer, P.K.: An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J. Numer. Anal. 13(2), 236–250 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  56. Chan, W.-M., George, A.: A linear time implementation of the reverse Cuthill-McKee algorithm. BIT Numer. Math. 20(1), 8–14 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  57. Amestoy, P.R., Davis, T.A., Duff, I.S.: Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30(3), 381–388 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. (TOMS) 38(1), 1 (2011)

    MathSciNet  Google Scholar 

  59. Davis, T.A.: Direct Methods for Sparse Linear Systems, vol. 2. SIAM Press, Philadelphia (2006)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support for this research from the U.S. Office of Naval Research under Grants N00014-11-1-0068 and N00014-15-1-2048, from the U.S. National Science Foundation under Grants CBET-1404767 and DMS-1522629, and from the U.S. Space and Naval Warfare Systems Command under Grant N65236-13-1-1000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil V. Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannataro, B.Ş., Rao, A.V. & Davis, T.A. State-defect constraint pairing graph coarsening method for Karush–Kuhn–Tucker matrices arising in orthogonal collocation methods for optimal control. Comput Optim Appl 64, 793–819 (2016). https://doi.org/10.1007/s10589-015-9821-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9821-x

Keywords

Navigation