Skip to main content
Log in

An evaluation-committee recommendation system for national R&D projects using social network analysis

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Korean National Science & Technology Information Service (NTIS) provides a service of evaluating national R&D projects and providing such evaluated national R&D projects along with their participating researcher information. It also provides a service of recommending and selecting evaluation committees for the R&D projects. Transparency is an important aspect that should be ensured on the evaluation process of the national R&D projects. Thus, the recommending unfamiliar evaluation committees with the participants of the R&D projects are one of the important aspects that can ensure the transparency for the evaluation process. In this paper, we present an evaluation-committee recommendation system using an online detection method of researcher connections by a partitioning-based clustering algorithm and random walks. The clustering algorithm enables us to partition the network to number of small graphs that can be processed via random walks. Then, we can rank the connection weight of each suspicious researcher according to a researcher in charge of a R&D project and we can exclude the researchers having higher connection weight from the evaluation committee of the R&D project. In addition, we also present a text-data refinement and entity identification method using Jaro–Winkler distance algorithm to construct more precise researcher network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  2. Leskovec, J., et al.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  4. Batarfi, O., El Shawi, R., Fayoumi, A.G., Nouri, R., Barnawi, A., Sakr, S.: Large scale graph processing systems: survey and an experimental evaluation. Cluster Comput. 18(3), 1189–1213 (2015)

    Article  Google Scholar 

  5. NTIS, http://www.ntis.go.kr/

  6. Jaro, M.A.: Probabilistic linkage of large public health data files. Stat. Med. 14(5–7), 491–498 (1995)

    Article  Google Scholar 

  7. William, C., Ravikumar, P., Fienberg, S.: A comparison of string metrics for matching names and records. In: KDD Workshop on Data Cleaning and Object Consolidation, vol. 3, pp. 73–78 (2003)

  8. Winkler, W.E.: Overview of record linkage and current research directions. In: Bureau of the Census (2006)

  9. Porter, M.A., Onnela, J.P., Mucha, P.J.: Communities in networks. Notices AMS 56(9), 1082–1097 (2009)

    MATH  MathSciNet  Google Scholar 

  10. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008)

    Article  MATH  Google Scholar 

  11. Bernard, T., Bui, A., Pilard, L., Sohier, D.: A distributed clustering algorithm for large-scale dynamic networks. Cluster Comput. 15(4), 335–350 (2012)

    Article  Google Scholar 

  12. Jin, S., Lin, W., Yin, H., Yang, S., Li, A., Deng, B.: Community structure mining in big data social media networks with MapReduce. Cluster Comput 18(3), 999–1010 (2015)

    Article  Google Scholar 

  13. Brooks, S.P., Morgan, B.J.: Optimization using simulated annealing. Statistician, pp. 241–257 (1995)

  14. Guimera, R., Sales-Pardo, M., Amaral, L.A.N.: Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70(2), 025101 (2004)

    Article  Google Scholar 

  15. Guimera, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433(7028), 895–900 (2005)

    Article  Google Scholar 

  16. Mu, C.H., Xie, J., Liu, Y., Chen, F., Liu, Y., Jiao, L.C.: Memetic algorithm with simulated annealing strategy and tightness greedy optimization for community detection in networks, Appl. Soft Comput. 34, 485–501 (2015)

    Article  Google Scholar 

  17. Moharil, S., Lee, S.Y.: Load balancing on temporally heterogeneous cluster of workstations for parallel simulated annealing. Cluster Comput. 14(4), 295–310 (2011)

    Article  Google Scholar 

  18. Gutierrez-Garcia, J.O., Ramirez-Nafarrate, A.: Agent-based load balancing in cloud data centers. Cluster Comput. 18(3), 1041–1062 (2015)

    Article  Google Scholar 

  19. Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)

    Article  Google Scholar 

  20. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  21. Zhou, Z., Wang, W., Wang, L.: Community detection based on an improved modularity. In: Pattern Recognition. Springer, Berlin Heidelberg (2012)

  22. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)

    Article  Google Scholar 

  23. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  24. Kurucz, M., Benczúr, A.A.: Geographically organized small communities and the hardness of clustering social networks. In: Data Mining for Social Network Data, pp. 177–199. Springer, US (2010)

  25. Sarkar, S., Dong, A.: Community detection in graphs using singular value decomposition. Phys. Rev. E 83(4), 046114 (2011)

    Article  Google Scholar 

  26. Kang, U., Meeder, B., Faloutsos, C.: Spectral analysis for billion-scale graphs: Discoveries and implementation. In: Advances in Knowledge Discovery and Data Mining, pp. 13–25. Springer, Berlin Heidelberg (2011)

  27. NDSL, http://www.ndsl.kr/

  28. KSCI, http://ksci.kisti.re.kr/main/main.ksci

  29. Geyer, C. J.: Markov chain Monte Carlo maximum likelihood. In: Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface (1991)

Download references

Acknowledgments

This research was supported by Maximize the Value of National Science and Technology by Strengthen Sharing/Collaboration of National R&D Information funded by the Korea Institute of Science and Technology Information (KISTI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaesoo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, H., Kim, YK. & Kim, J. An evaluation-committee recommendation system for national R&D projects using social network analysis. Cluster Comput 19, 921–930 (2016). https://doi.org/10.1007/s10586-016-0545-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0545-1

Keywords

Navigation