Skip to main content

Advertisement

Log in

Identification and validation of genes with expression patterns inverse to multiple metastasis suppressor genes in breast cancer cell lines

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metastasis suppressor genes (MSGs) have contributed to an understanding of regulatory pathways unique to the lethal metastatic process. When re-expressed in experimental models, MSGs block cancer spread to, and colonization of distant sites without affecting primary tumor formation. Genes have been identified with expression patterns inverse to a single MSG, and found to encode functional, druggable signaling pathways. We now hypothesize that common signaling pathways mediate the effects of multiple MSGs. By gene expression profiling of human MCF7 breast carcinoma cells expressing a scrambled siRNA, or siRNAs to each of 19 validated MSGs (NME1, BRMS1, CD82, CDH1, CDH2, CDH11, CASP8, MAP2K4, MAP2K6, MAP2K7, MAPK14, GSN, ARHGDIB, AKAP12, DRG1, CD44, PEBP1, RRM1, KISS1), we identified genes whose expression was significantly opposite to at least five MSGs. Five genes were selected for further analysis: PDE5A, UGT1A, IL11RA, DNM3 and OAS1. After stable downregulation of each candidate gene in the aggressive human breast cancer cell line MDA-MB-231T, in vitro motility was significantly inhibited. Two stable clones downregulating PDE5A (phosphodiesterase 5A), an enzyme involved in the regulation of cGMP-specific signaling, exhibited no difference in cell proliferation, but reduced motility by 47 and 66 % compared to the empty vector-expressing cells (p = 0.01 and p = 0.005). In an experimental metastasis assay, two shPDE5A-MDA-MB-231T clones produced 47–62 % fewer lung metastases than shRNA-scramble expressing cells (p = 0.045 and p = 0.009 respectively). This study demonstrates that previously unrecognized genes are inversely related to the expression of multiple MSGs, contribute to aspects of metastasis, and may stand as novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MSGs:

Metastasis suppressor genes

PDE5A:

Phosphodiesterase 5A

UGT1A:

UPD-glucoronosyltransferase 1 A family

H&E:

Hematoxylin and eosin

IL11RA:

Interleukin-11 receptor alpha

DNM3:

Dynamin-3

OAS1:

2′-5′-Oligoadenylate synthetase-1

FBS:

Fetal bovine serum

siRNA:

Small interfering RNA

shRNA:

Small hairpin RNA

References

  1. DeSantis C et al (2014) Breast cancer statistics, 2013. CA Cancer J Clin 64(1):52–62

    Article  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30

    Article  PubMed  Google Scholar 

  3. Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369(9574):1742–1757

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Stafford LJ, Vaidya KS, Welch DR (2008) Metastasis suppressors genes in cancer. Int J Biochem Cell Biol 40(5):874–891

    Article  PubMed  CAS  Google Scholar 

  5. Steeg PS et al (1988) Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res 48(22):6550–6554

    PubMed  CAS  Google Scholar 

  6. Sleeman J, Steeg PS (2010) Cancer metastasis as a therapeutic target. Eur J Cancer 46(7):1177–1180

    Article  PubMed  CAS  Google Scholar 

  7. Berger JC et al (2005) Metastasis suppressor genes: from gene identification to protein function and regulation. Cancer Biol Ther 4(8):805–812

    Article  PubMed  CAS  Google Scholar 

  8. Samant RS et al (2007) Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation. Mol Cancer 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Smith SC, Theodorescu D (2009) Learning therapeutic lessons from metastasis suppressor proteins. Nat Rev Cancer 9(4):253–264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Palmieri D et al (2005) Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. J Natl Cancer Inst 97(9):632–642

    Article  PubMed  CAS  Google Scholar 

  11. Liu F, Qi HL, Chen HL (2000) Effects of all-trans retinoic acid and epidermal growth factor on the expression of Nm23-H1 in human hepatocarcinoma cells. J Cancer Res Clin Oncol 126(2):85–90

    PubMed  CAS  Google Scholar 

  12. Mashimo T et al (2000) Activation of the tumor metastasis suppressor gene, KAI1, by etoposide is mediated by p53 and c-Jun genes. Biochem Biophys Res Commun 274(2):370–376

    Article  PubMed  CAS  Google Scholar 

  13. El Touny LH, Banerjee PP (2007) Genistein induces the metastasis suppressor kangai-1 which mediates its anti-invasive effects in TRAMP cancer cells. Biochem Biophys Res Commun 361(1):169–175

    Article  PubMed  PubMed Central  Google Scholar 

  14. Horak CE et al (2007) Nm23-H1 suppresses metastasis by inhibiting expression of the lysophosphatidic acid receptor EDG2. Cancer Res 67(24):11751–11759

    Article  PubMed  CAS  Google Scholar 

  15. Titus B et al (2005) Endothelin axis is a target of the lung metastasis suppressor gene RhoGDI2. Cancer Res 65(16):7320–7327

    Article  PubMed  CAS  Google Scholar 

  16. Horak CE et al (2007) Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Res 67(15):7238–7246

    Article  PubMed  CAS  Google Scholar 

  17. Marshall JC et al (2012) Effect of inhibition of the lysophosphatidic acid receptor 1 on metastasis and metastatic dormancy in breast cancer. J Natl Cancer Inst 104(17):1306–1319

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Minn AJ et al (2012) Identification of novel metastasis suppressor signaling pathways for breast cancer. Cell Cycle 11(13):2452–2457

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Yun J et al (2011) Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J 30(21):4500–4514

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Xia W et al (2001) The Src-suppressed C kinase substrate, SSeCKS, is a potential metastasis inhibitor in prostate cancer. Cancer Res 61(14):5644–5651

    PubMed  CAS  Google Scholar 

  21. Theodorescu D et al (2004) Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer. Clin Cancer Res 10(11):3800–3806

    Article  PubMed  CAS  Google Scholar 

  22. Phadke PA et al (2008) BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol 172(3):809–817

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Stupack DG et al (2006) Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 439(7072):95–99

    Article  PubMed  CAS  Google Scholar 

  24. Rudy W et al (1993) The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: each one individually suffices to confer metastatic behavior. Cancer Res 53(6):1262–1268

    PubMed  CAS  Google Scholar 

  25. Kallakury BV et al (1996) Decreased levels of CD44 protein and mRNA in prostate carcinoma. Correlation with tumor grade and ploidy. Cancer 78(7):1461–1469

    Article  PubMed  CAS  Google Scholar 

  26. Phillips KK et al (1998) Correlation between reduction of metastasis in the MDA-MB-435 model system and increased expression of the Kai-1 protein. Mol Carcinog 21(2):111–120

    Article  PubMed  CAS  Google Scholar 

  27. Yang X et al (1997) KAI1, a putative marker for metastatic potential in human breast cancer. Cancer Lett 119(2):149–155

    Article  PubMed  CAS  Google Scholar 

  28. Perl AK et al (1998) A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392(6672):190–193

    Article  PubMed  CAS  Google Scholar 

  29. Frixen UH et al (1991) E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113(1):173–185

    Article  PubMed  CAS  Google Scholar 

  30. Kashima T et al (2003) Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. Int J Cancer (Journal international du cancer) 104(2):147–154

    Article  CAS  Google Scholar 

  31. Nakajima G et al (2008) CDH11 expression is associated with survival in patients with osteosarcoma. Cancer Genomics Proteomics 5(1):37–42

    PubMed  CAS  Google Scholar 

  32. Guan RJ et al (2000) Drg-1 as a differentiation-related, putative metastatic suppressor gene in human colon cancer. Cancer Res 60(3):749–755

    PubMed  CAS  Google Scholar 

  33. Fujita H et al (2001) Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect. Int J Cancer (Journal international du cancer) 93(6):773–780

    Article  CAS  Google Scholar 

  34. Beck BH, Welch DR (2010) The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. Eur J Cancer 46(7):1283–1289

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Yamada SD et al (2002) Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res 62(22):6717–6723

    PubMed  CAS  Google Scholar 

  36. Hickson JA et al (2006) The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res 66(4):2264–2270

    Article  PubMed  CAS  Google Scholar 

  37. Vander Griend DJ et al (2005) Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Res 65(23):10984–10991

    Article  PubMed  CAS  Google Scholar 

  38. Hagan S et al (2005) Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Re 11(20):7392–7397

    Article  CAS  Google Scholar 

  39. Gautam A, Bepler G (2006) Suppression of lung tumor formation by the regulatory subunit of ribonucleotide reductase. Cancer Res 66(13):6497–6502

    Article  PubMed  CAS  Google Scholar 

  40. Beyer I et al (2011) Controlled extracellular matrix degradation in breast cancer tumors improves therapy by trastuzumab. Mol Ther 19(3):479–489

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Wang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679

    Article  PubMed  CAS  Google Scholar 

  42. Pawitan Y et al (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res: BCR 7(6):R953–R964

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Muggerud AA et al (2010) Molecular diversity in ductal carcinoma in situ (DCIS) and early invasive breast cancer. Mol Oncol 4(4):357–368

    Article  PubMed  CAS  Google Scholar 

  44. Guillemette C et al (2010) UGT genomic diversity: beyond gene duplication. Drug Metab Rev 42(1):24–44

    Article  PubMed  CAS  Google Scholar 

  45. Guillemette C et al (2000) Genetic polymorphisms in uridine diphospho-glucuronosyltransferase 1A1 and association with breast cancer among African Americans. Cancer Res 60(4):950–956

    PubMed  CAS  Google Scholar 

  46. Albert C et al (1999) The monkey and human uridine diphosphate-glucuronosyltransferase UGT1A9, expressed in steroid target tissues, are estrogen-conjugating enzymes. Endocrinology 140(7):3292–3302

    PubMed  CAS  Google Scholar 

  47. Okamoto PM, Herskovits JS, Vallee RB (1997) Role of the basic, proline-rich region of dynamin in Src homology 3 domain binding and endocytosis. J Biol Chem 272(17):11629–11635

    Article  PubMed  CAS  Google Scholar 

  48. Justesen J, Hartmann R, Kjeldgaard NO (2000) Gene structure and function of the 2′-5′-oligoadenylate synthetase family. Cell Mol Life Sci: CMLS 57(11):1593–1612

    Article  PubMed  CAS  Google Scholar 

  49. Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819

    Article  PubMed  CAS  Google Scholar 

  50. Juilfs DM et al (1999) Cyclic GMP as substrate and regulator of cyclic nucleotide phosphodiesterases (PDEs). Rev Physiol Biochem Pharmacol 135:67–104

    Article  PubMed  CAS  Google Scholar 

  51. Boolell M et al (1996) Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res 8(2):47–52

    PubMed  CAS  Google Scholar 

  52. Weber GF (2013) Why does cancer therapy lack effective anti-metastasis drugs? Cancer Lett 328(2):207–211

    Article  PubMed  CAS  Google Scholar 

  53. Brabletz T et al (2013) Roadblocks to translational advances on metastasis research. Nat Med 19(9):1104–1109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Steeg PS (2012) Perspective: the right trials. Nature 485(7400):S58–S59

    Article  PubMed  CAS  Google Scholar 

  55. Perrais D, Merrifield CJ (2005) Dynamics of endocytic vesicle creation. Dev Cell 9(5):581–592

    Article  PubMed  CAS  Google Scholar 

  56. Ochoa GC et al (2000) A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol 150(2):377–389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Gold ES et al (1999) Dynamin 2 is required for phagocytosis in macrophages. J Exp Med 190(12):1849–1856

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Kruchten AE, McNiven MA (2006) Dynamin as a mover and pincher during cell migration and invasion. J Cell Sci 119(Pt 9):1683–1690

    Article  PubMed  CAS  Google Scholar 

  59. Thompson HM et al (2002) The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis. Curr Biol: CB 12(24):2111–2117

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Harper CB et al (2013) Targeting membrane trafficking in infection prophylaxis: dynamin inhibitors. Trends Cell Biol 23(2):90–101

    Article  PubMed  CAS  Google Scholar 

  61. Domingo-Gil E, Esteban M (2006) Role of mitochondria in apoptosis induced by the 2-5A system and mechanisms involved. Apoptosis: Int J Program Cell Death 11(5):725–738

    Article  CAS  Google Scholar 

  62. Mandal S, Abebe F, Chaudhary J (2011) 2′-5′ Oligoadenylate synthetase 1 polymorphism is associated with prostate cancer. Cancer 117(24):5509–5518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Kazma R et al (2012) Association of the innate immunity and inflammation pathway with advanced prostate cancer risk. PLoS One 7(12):e51680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Campbell CL et al (2001) Increased expression of the interleukin-11 receptor and evidence of STAT3 activation in prostate carcinoma. Am J Pathol 158(1):25–32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Campbell CL et al (2001) Interleukin-11 receptor expression in primary ovarian carcinomas. Gynecol Oncol 80(2):121–127

    Article  PubMed  CAS  Google Scholar 

  66. Hanavadi S et al (2006) Expression of interleukin 11 and its receptor and their prognostic value in human breast cancer. Ann Surg Oncol 13(6):802–808

    Article  PubMed  Google Scholar 

  67. Yoshizaki A et al (2006) Expression of interleukin (IL)-11 and IL-11 receptor in human colorectal adenocarcinoma: IL-11 up-regulation of the invasive and proliferative activity of human colorectal carcinoma cells. Int J Oncol 29(4):869–876

    PubMed  CAS  Google Scholar 

  68. Mackenzie PI et al (2005) Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15(10):677–685

    Article  PubMed  CAS  Google Scholar 

  69. Gong QH et al (2001) Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics 11(4):357–368

    Article  PubMed  CAS  Google Scholar 

  70. Lepine J et al (2004) Specificity and regioselectivity of the conjugation of estradiol, estrone, and their catecholestrogen and methoxyestrogen metabolites by human uridine diphospho-glucuronosyltransferases expressed in endometrium. J Clin Endocrinol Metab 89(10):5222–5232

    Article  PubMed  CAS  Google Scholar 

  71. Gagne JF et al (2002) Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol 62(3):608–617

    Article  PubMed  CAS  Google Scholar 

  72. Innocenti F et al (2005) Haplotypes of variants in the UDP-glucuronosyltransferase 1A9 and 1A1 genes. Pharmacogenet Genomics 15(5):295–301

    Article  PubMed  CAS  Google Scholar 

  73. Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109(3):366–398

    Article  PubMed  CAS  Google Scholar 

  74. Maurice DH et al (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13(4):290–314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Lim JT et al (1999) Sulindac derivatives inhibit growth and induce apoptosis in human prostate cancer cell lines. Biochem Pharmacol 58(7):1097–1107

    Article  PubMed  CAS  Google Scholar 

  76. Sarfati M et al (2003) Sildenafil and vardenafil, types 5 and 6 phosphodiesterase inhibitors, induce caspase-dependent apoptosis of B-chronic lymphocytic leukemia cells. Blood 101(1):265–269

    Article  PubMed  CAS  Google Scholar 

  77. Zhu B et al (2005) Suppression of cyclic GMP-specific phosphodiesterase 5 promotes apoptosis and inhibits growth in HT29 cells. J Cell Biochem 94(2):336–350

    Article  PubMed  CAS  Google Scholar 

  78. Shimizu-Albergine M et al (2003) Individual cerebellar Purkinje cells express different cGMP phosphodiesterases (PDEs): in vivo phosphorylation of cGMP-specific PDE (PDE5) as an indicator of cGMP-dependent protein kinase (PKG) activation. J Neurosci 23(16):6452–6459

    PubMed  CAS  Google Scholar 

  79. Li Z et al (2003) A stimulatory role for cGMP-dependent protein kinase in platelet activation. Cell 112(1):77–86

    Article  PubMed  CAS  Google Scholar 

  80. Sopory S, Kaur T, Visweswariah SS (2004) The cGMP-binding, cGMP-specific phosphodiesterase (PDE5): intestinal cell expression, regulation and role in fluid secretion. Cell Signal 16(6):681–692

    Article  PubMed  CAS  Google Scholar 

  81. Stark S et al (2001) Vardenafil increases penile rigidity and tumescence in men with erectile dysfunction after a single oral dose. Eur Urol 40(2):181–188 discussion 9–90

    Article  PubMed  CAS  Google Scholar 

  82. Yip-Schneider MT et al (2001) Cell cycle effects of nonsteroidal anti-inflammatory drugs and enhanced growth inhibition in combination with gemcitabine in pancreatic carcinoma cells. J Pharmacol Exp Ther 298(3):976–985

    PubMed  CAS  Google Scholar 

  83. Pusztai L et al (2003) Phase I and II study of exisulind in combination with capecitabine in patients with metastatic breast cancer. J Clin Oncol 21(18):3454–3461

    Article  PubMed  CAS  Google Scholar 

  84. Whitehead CM et al (2003) Exisulind-induced apoptosis in a non-small cell lung cancer orthotopic lung tumor model augments docetaxel treatment and contributes to increased survival. Mol Cancer Ther 2(5):479–488

    PubMed  CAS  Google Scholar 

  85. Soriano AF et al (1999) Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines. Cancer Res 59(24):6178–6184

    PubMed  CAS  Google Scholar 

  86. Li Q, Shu Y (2014) Pharmacological modulation of cytotoxicity and cellular uptake of anti-cancer drugs by PDE5 inhibitors in lung cancer cells. Pharm Res 31(1):86–96. doi:10.1007/s11095-013-1134-0

  87. Hu J et al (2010) Phosphodiesterase type 5 inhibitors increase Herceptin transport and treatment efficacy in mouse metastatic brain tumor models. PLoS One 5(4):e10108

    Article  PubMed  PubMed Central  Google Scholar 

  88. Arozarena I et al (2011) Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 19(1):45–57

    Article  PubMed  CAS  Google Scholar 

  89. Murthy KS (2008) Contractile agonists attenuate cGMP levels by stimulating phosphorylation of cGMP-specific PDE5; an effect mediated by RhoA/PKC-dependent inhibition of protein phosphatase 1. Br J Pharmacol 153(6):1214–1224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Geng Y et al (1998) Cyclic GMP and cGMP-binding phosphodiesterase are required for interleukin-1-induced nitric oxide synthesis in human articular chondrocytes. J Biol Chem 273(42):27484–27491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural program of the National Cancer Institute and Breast Cancer Research Stamp Fund awarded through competitive peer review by National Cancer Institute (to PSS). The authors would like to acknowledge Manjula Kasoji and Dr Fathi Elloumi of the CCRIFX Bioinformatics Core operated by Leidos Biomedical Research, Inc and funded by the NCI Center for Cancer Research for their contributions to the bioinformatics analysis.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natascia Marino or Patricia S. Steeg.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marino, N., Collins, J.W., Shen, C. et al. Identification and validation of genes with expression patterns inverse to multiple metastasis suppressor genes in breast cancer cell lines. Clin Exp Metastasis 31, 771–786 (2014). https://doi.org/10.1007/s10585-014-9667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9667-0

Keywords

Navigation