Skip to main content

Advertisement

Log in

High expression of S100A4 and endoglin is associated with metastatic disease in head and neck squamous cell carcinoma

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The presence of cervical metastasis is responsible for high morbidity and mortality rates in individuals with head and neck squamous cell carcinoma (HNSCC). S100A4, a pleiotropic EF-hand calcium-binding protein, is expressed in various normal and cancer cell types. During cancer progression, molecular disturbances in S100A4 can modulate the activity and expression of pre-metastatic and metastatic genes. In this study, we investigated the association between S100A4 methylation status and protein expression as well as the expression of the S100A4 related-proteins annexin A2 (ANXA2), matrix metallopeptidase-9, and endoglin, for metastasis and other clinicopathological parameters in HNSCC. Formalin-fixed, paraffin-embedded blocks of metastatic and non-metastatic HNSCC and matched cervical lymph node (LN) samples (metastatic LN = mLN, non-metastatic = nmLN, and control LN (lymphadenitis) = cLN) were submitted for methylation specific-polymerase chain reaction and immunohistochemistry. Our results showed that S100A4 methylation status failed to demonstrate association with cervical metastasis and other clinicopathological factors related to HNSCC. HNSCC samples from patients that presented with metastatic disease showed high S100A4 and endoglin expression (p < 0.05). In conclusion, molecular disturbances in S100A4 and endoglin expression might regulate the formation of cervical metastasis in HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J (2010) Ward E (2010) cancer statistics. CA Cancer J Clin 60(5):277–300. doi:10.3322/caac.20073

    PubMed  Google Scholar 

  2. Warnakulasuriya S (2009) Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45(4–5):309–316. doi:10.1016/j.oraloncology.2008.06.002

    Article  PubMed  Google Scholar 

  3. Curado MP, Boyle P (2013) Epidemiology of head and neck squamous cell carcinoma not related to tobacco or alcohol. Curr Opin Oncol 25(3):229–234. doi:10.1097/CCO.0b013e32835ff48c

    PubMed  Google Scholar 

  4. De Paula AM, Souza LR, Farias LC, Correa GT, Fraga CA, Eleuterio NB, Silveira AC, Santos FB, Haikal DS, Guimaraes AL, Gomez RS (2009) Analysis of 724 cases of primary head and neck squamous cell carcinoma (HNSCC) with a focus on young patients and p53 immunolocalization. Oral Oncol 45(9):777–782

    Article  PubMed  Google Scholar 

  5. Rothenberg SM, Ellisen LW (2012) The molecular pathogenesis of head and neck squamous cell carcinoma. J Clin Invest 122(6):1951–1957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hiratsuka H, Miyakawa A, Nakamori K, Kido Y, Sunakawa H, Kohama G (1997) Multivariate analysis of occult lymph node metastasis as a prognostic indicator for patients with squamous cell carcinoma of the oral cavity. Cancer 80(3):351–356. doi:10.1002/(SICI)1097-0142(19970801)80

    Article  CAS  PubMed  Google Scholar 

  7. Descot A, Oskarsson T (2013) The molecular composition of the metastatic niche. Exp Cell Res. doi:10.1016/j.yexcr.2013.04.017

    PubMed  Google Scholar 

  8. Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited–the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128(11):2527–2535. doi:10.1002/ijc.26031

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21(2):139–146. doi:10.1016/j.semcancer.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  10. Sleeman JP, Christofori G, Fodde R, Collard JG, Berx G, Decraene C, Ruegg C (2012) Concepts of metastasis in flux: the stromal progression model. Semin Cancer Biol 22(3):174–186. doi:10.1016/j.semcancer.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  11. Donato R (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33(7):637–668

    CAS  PubMed  Google Scholar 

  12. Polans AS, Palczewski K, Asson-Batres MA, Ohguro H, Witkowska D, Haley TL, Baizer L, Crabb JW (1994) Purification and primary structure of Capl, an S-100-related calcium-binding protein isolated from bovine retina. J Biol Chem 269(8):6233–6240

    CAS  PubMed  Google Scholar 

  13. Boye K, Maelandsmo GM (2010) S100A4 and metastasis: a small actor playing many roles. Am J Pathol 176(2):528–535. doi:10.2353/ajpath.2010.090526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Garrett SC, Varney KM, Weber DJ, Bresnick AR (2006) S100A4, a mediator of metastasis. J Biol Chem 281(2):677–680

    Article  CAS  PubMed  Google Scholar 

  15. Lukanidin E, Sleeman JP (2012) Building the niche: the role of the S100 proteins in metastatic growth. Semin Cancer Biol 22(3):216–225. doi:10.1016/j.semcancer.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  16. Grieve AG, Moss SE, Hayes MJ (2012) Annexin A2 at the interface of actin and membrane dynamics: a focus on its roles in endocytosis and cell polarization. Int J Cell Biol 2012:852430. doi:10.1155/2012/852430

    PubMed Central  PubMed  Google Scholar 

  17. Sharma M, Ownbey RT, Sharma MC (2010) Breast cancer cell surface annexin II induces cell migration and neoangiogenesis via tPA dependent plasmin generation. Exp Mol Pathol 88(2):278–286. doi:10.1016/j.yexmp.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  18. Lokman NA, Ween MP, Oehler MK, Ricciardelli C (2011) The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenviron 4(2):199–208. doi:10.1007/s12307-011-0064-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G (2002) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37(6):375–536. doi:10.1080/10409230290771546

    Article  PubMed  Google Scholar 

  20. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML (2001) Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A 98(22):12485–12490. doi:10.1073/pnas.171460498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744. doi:10.1038/35036374

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP (1999) Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 274(19):13066–13076

    Article  CAS  PubMed  Google Scholar 

  23. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176

    PubMed Central  PubMed  Google Scholar 

  24. Fonsatti E, Maio M (2004) Highlights on endoglin (CD105): from basic findings towards clinical applications in human cancer. J Trans Med 2(1):18

    Article  Google Scholar 

  25. Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, Boak BB, Wendel DP (1999) Defective angiogenesis in mice lacking endoglin. Science 284(5419):1534–1537

    Article  CAS  PubMed  Google Scholar 

  26. Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, ten Dijke P (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23(20):4018–4028. doi:10.1038/sj.emboj.7600386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. She X, Matsuno F, Harada N, Tsai H, Seon BK (2004) Synergy between anti-endoglin (CD105) monoclonal antibodies and TGF-beta in suppression of growth of human endothelial cells. Int J Cancer 108(2):251–257. doi:10.1002/ijc.11551

    CAS  PubMed  Google Scholar 

  28. Kuiper P, Hawinkels LJ, de Jonge-Muller ES, Biemond I, Lamers CB, Verspaget HW (2011) Angiogenic markers endoglin and vascular endothelial growth factor in gastroenteropancreatic neuroendocrine tumors. World J Gastroenterol 17(2):219–225. doi:10.3748/wjg.v17.i2.219

    Article  PubMed Central  PubMed  Google Scholar 

  29. Saad RS, Liu YL, Nathan G, Celebrezze J, Medich D, Silverman JF (2004) Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in colorectal cancer. Mod Pathol 17(2):197–203

    Article  CAS  PubMed  Google Scholar 

  30. Lo JF, Yu CC, Chiou SH, Huang CY, Jan CI, Lin SC, Liu CJ, Hu WY, Yu YH (2011) The epithelial-mesenchymal transition mediator S100A4 maintains cancer-initiating cells in head and neck cancers. Cancer Res 71(5):1912–1923. doi:10.1158/0008-5472.CAN-10-2350

    Article  CAS  PubMed  Google Scholar 

  31. Moriyama-Kita M, Endo Y, Yonemura Y, Heizmann CW, Schafer BW, Sasaki T, Yamamoto E (2004) Correlation of S100A4 expression with invasion and metastasis in oral squamous cell carcinoma. Oral Oncol 40(5):496–500

    Article  CAS  PubMed  Google Scholar 

  32. Sapkota D, Bruland O, Boe OE, Bakeer H, Elgindi OA, Vasstrand EN, Ibrahim SO (2008) Expression profile of the S100 gene family members in oral squamous cell carcinomas. JOral PatholMed 37(10):607–615. doi:10.1111/j.1600-0714.2008.00683.x

    CAS  Google Scholar 

  33. Broders AC (1921) Squamous-cell epithelioma of the skin: a study of 256 cases. Ann Surg 73(2):141–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Bryne M, Koppang HS, Lilleng R, Kjaerheim A (1992) Malignancy grading of the deep invasive margins of oral squamous cell carcinomas has high prognostic value. J Pathol 166(4):375–381

    Article  CAS  PubMed  Google Scholar 

  35. Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M (2006) DNA methylation: bisulphite modification and analysis. Nat Protoc 1(5):2353–2364. doi:10.1038/nprot.2006.324

    Article  CAS  PubMed  Google Scholar 

  36. Reinders J, 12 (2009) Amplification of bisulfite-converted DNA for genome-wide DNA methylation profiling. Cold Spring Harb Protoc 2009:pdb.prot5342. doi:10.1101/pdb.prot5342

    Article  PubMed  Google Scholar 

  37. Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, McCulloch P, Pezzella F, Viale G, Weidner N, Harris AL, Dirix LY (1996) Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer 32A(14):2474–2484

    Article  CAS  PubMed  Google Scholar 

  38. Weidner N (1995) Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 147(1):9–19

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Bird A (1992) The essentials of DNA methylation. Cell 70(1):5–8

    Article  CAS  PubMed  Google Scholar 

  40. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG (2001) Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 10(7):687–692

    Article  CAS  PubMed  Google Scholar 

  41. Ehrlich M (2009) DNA hypomethylation in cancer cells. Epigenomics 1(2):239–259. doi:10.2217/epi.09.33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Li Y, Liu ZL, Zhang KL, Chen XY, Kong QY, Wu ML, Sun Y, Liu J, Li H (2009) Methylation-associated silencing of S100A4 expression in human epidermal cancers. Exp Dermatol 18(10):842–848

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Guo Y, Fu S, Yang M, Sun KL, Fu WN (2010) Hypomethylation-induced expression of S100A4 increases the invasiveness of laryngeal squamous cell carcinoma. Oncol Rep 23(4):1101–1107

    Article  CAS  PubMed  Google Scholar 

  44. Xie R, Loose DS, Shipley GL, Xie S, Bassett RL Jr, Broaddus RR (2007) Hypomethylation-induced expression of S100A4 in endometrial carcinoma. Mod Pathol 20(10):1045–1054

    Article  CAS  PubMed  Google Scholar 

  45. Matos LL, Trufelli DC, de Matos MG, da Silva Pinhal MA (2010) Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights 5:9–20

    Article  PubMed Central  PubMed  Google Scholar 

  46. Moriyama-Kita M, Endo Y, Yonemura Y, Heizmann CW, Miyamori H, Sato H, Yamamoto E, Sasaki T (2005) S100A4 regulates E-cadherin expression in oral squamous cell carcinoma. Cancer Lett 230(2):211–218

    Article  CAS  PubMed  Google Scholar 

  47. Chen M, Sinha M, Luxon BA, Bresnick AR, O’Connor KL (2009) Integrin α6β4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. J Biol Chem 284(3):1484–1494. doi:10.1074/jbc.M803997200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Li ZH, Bresnick AR (2006) The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin-IIA. Cancer Res 66(10):5173–5180

    Article  CAS  PubMed  Google Scholar 

  49. Bjornland K, Winberg JO, Odegaard OT, Hovig E, Loennechen T, Aasen AO, Fodstad O, Maelandsmo GM (1999) S100A4 involvement in metastasis: deregulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in osteosarcoma cells transfected with an anti-S100A4 ribozyme. Cancer Res 59(18):4702–4708

    CAS  PubMed  Google Scholar 

  50. Schmidt-Hansen B, Ornas D, Grigorian M, Klingelhofer J, Tulchinsky E, Lukanidin E, Ambartsumian N (2004) Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity. Oncogene 23(32):5487–5495

    Article  CAS  PubMed  Google Scholar 

  51. Semov A, Moreno MJ, Onichtchenko A, Abulrob A, Ball M, Ekiel I, Pietrzynski G, Stanimirovic D, Alakhov V (2005) Metastasis-associated protein S100A4 induces angiogenesis through interaction with annexin II and accelerated plasmin formation. JBiolChem 280(21):20833–20841

    CAS  Google Scholar 

  52. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 97(6):2626–2631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Fraga CA, De Oliveira MV, de Oliveira ES, Barros LO, Santos FB, Gomez RS, De-Paula AM, Guimaraes AL (2011) A high HIF-1alpha expression genotype is associated with poor prognosis of upper aerodigestive tract carcinoma patients. Oral Oncol. doi:10.1016/j.oraloncology.2011.08.023

    PubMed  Google Scholar 

  54. Kyzas PA, Agnantis NJ, Stefanou D (2006) Endoglin (CD105) as a prognostic factor in head and neck squamous cell carcinoma. Virchows Arch 448(6):768–775. doi:10.1007/s00428-006-0195-4

    Article  CAS  PubMed  Google Scholar 

  55. Marioni G, D’Alessandro E, Giacomelli L, Staffieri A (2010) CD105 is a marker of tumour vasculature and a potential target for the treatment of head and neck squamous cell carcinoma. J Oral Pathol Med 39(5):361–367. doi:10.1111/j.1600-0714.2010.00888.x

    CAS  PubMed  Google Scholar 

  56. Rafii S, Lyden D (2006) S100 chemokines mediate bookmarking of premetastatic niches. Nat Cell Biol 8(12):1321–1323. doi:10.1038/ncb1206-1321

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406. doi:10.1083/jcb.201102147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Rucci N, Sanita P, Angelucci A (2011) Roles of metalloproteases in metastatic niche. Curr Mol Med 11(8):609–622

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Pesquisa (CNPq; process 478861/2012-5) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG; process APQ00650-12). AMB De-Paula, ALS Guimarães, SHS Santos, and RS Gomez are researchers fellows of the CNPq.

Conflict of interests

The authors declare no Conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Maurício Batista De-Paula.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.V.M., de Carvalho Fraga, C.A., Barros, L.O. et al. High expression of S100A4 and endoglin is associated with metastatic disease in head and neck squamous cell carcinoma. Clin Exp Metastasis 31, 639–649 (2014). https://doi.org/10.1007/s10585-014-9655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9655-4

Keywords

Navigation