Skip to main content

Advertisement

Log in

Anti-LFA-1 antibodies enhance metastasis of ocular lymphoma to the brain and contralateral eye

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Previously we demonstrated that intraperitoneal (IP) inoculation of Rev-2-T-6 mouse lymphoma into syngeneic Balb/c hosts resulted in brain metastasis, migration along the optic nerve sheath, and ocular infiltration. In a second model: intravitreal inoculation of Rev-2-T-6 cells, the developing lymphoma was largely confined within the eye, seldom breaching the retinal pigment epithelium to reside in the choroid and sclera. There was no retrograde infiltration into the brain. Here, we describe a third, complementary model, whereby intravitreal inoculation of Rev-2-T-6 cells into Balb/c mice, followed by repeated IP inoculations of anti-LFA-1/CD11a monoclonal antibodies, results in extensive infiltration of the choroid, sclera, conjunctiva, eyelids and orbit. Furthermore, the lymphoma cells metastasize along the optic nerve sheath into the brain, and through the contralateral optic nerve tract into the contralateral eye. There is no systemic involvement of the lymphoma. Furthermore, anti-LFA-1 treatment results in elevated levels of serum anti-Rev-2-T-6 antibodies. Inoculation of Rev-2-T-6 cells into the vitreous of severe combined immune deficient mice demonstrates a course of clinical signs and histopathological findings similar to those in immune-competent mice treated with anti-LFA-1 antibodies, including invasion of the contralateral eye. Taken together, these findings suggest that confinement of Rev-2-T-6 lymphoma cells to the eye depends on active immune surveillance using a population of effector cells expressing the cell surface integrin LFA-1. Impairing this protection enhances tumor aggressiveness within the eye, and the likelihood of early retrograde lymphoma metastasis into the brain and the contralateral eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ICAM-1:

Intracellular adhesion molecule-1

LFA-1:

Lymphocyte function-associated antigen-1

SCID:

Severe combined immune deficient

IP:

Intraperitoneal

APCs:

Antigen presenting cells

References

  1. Gonzalez-Amaro R, Sanchez-Madrid F (1999) Cell adhesion molecules: selectins and integrins. Crit Rev Immunol 19:389–429

    PubMed  CAS  Google Scholar 

  2. Hogg N, Laschinger M, Giles K, McDowall A (2003) T-cell integrins: more than just sticking points. J Cell Sci 116:4695–4705

    Article  PubMed  CAS  Google Scholar 

  3. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  PubMed  CAS  Google Scholar 

  4. Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C (2002) JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3:151–158

    Article  PubMed  CAS  Google Scholar 

  5. Shulman Z, Shinder V, Klein E et al (2009) Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin. Immunity 30:384–396

    Article  PubMed  CAS  Google Scholar 

  6. Kavanaugh AF, Lightfoot E, Lipsky PE, Oppenheimer-Marks N (1991) Role of CD11/CD18 in adhesion and transendothelial migration of T cells. Analysis utilizing CD18-deficient T cell clones. J Immunol 146:4149–4156

    PubMed  CAS  Google Scholar 

  7. Warnock RA, Askari S, Butcher EC, von Andrian UH (1998) Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J Exp Med 187:205–216

    Article  PubMed  CAS  Google Scholar 

  8. Evans R, Patzak I, Svensson L et al (2009) Integrins in immunity. J Cell Sci 122:215–225

    Article  PubMed  CAS  Google Scholar 

  9. Reichardt P, Dornbach B, Gunzer M (2007) The molecular makeup and function of regulatory and effector synapses. Immunol Rev 218:165–177

    Article  PubMed  CAS  Google Scholar 

  10. O’Rourke AM, Ybarrondo B, Mescher MF (1993) CD8 and antigen-specific T cell adhesion cascades. Semin Immunol 5:263–270

    Article  PubMed  Google Scholar 

  11. Nicolls MR, Gill RG (2006) LFA-1 (CD11a) as a therapeutic target. Am J Transplant 6:27–36

    Article  PubMed  CAS  Google Scholar 

  12. Suzuki J, Isobe M, Izawa A et al (1999) Differential Th1 and Th2 cell regulation of murine cardiac allograft acceptance by blocking cell adhesion of ICAM-1/LFA-1 and VCAM-1/VLA-4. Transpl Immunol 7:65–72

    Article  PubMed  CAS  Google Scholar 

  13. Smits HH, de Jong EC, Schuitemaker JH et al (2002) Intercellular adhesion molecule-1/LFA-1 ligation favors human Th1 development. J Immunol 168:1710–1716

    PubMed  CAS  Google Scholar 

  14. Koopman G, Keehnen RM, Lindhout E et al (1994) Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J Immunol 152:3760–3767

    PubMed  CAS  Google Scholar 

  15. Smith A, Stanley P, Jones K, Svensson L, McDowall A, Hogg N (2007) The role of the integrin LFA-1 in T-lymphocyte migration. Immunol Rev 218:135–146

    Article  PubMed  CAS  Google Scholar 

  16. Poston RS, Robbins RC, Chan B et al (2000) Effects of humanized monoclonal antibody to rhesus CD11a in rhesus monkey cardiac allograft recipients. Transplantation 69:2005–2013

    Article  PubMed  CAS  Google Scholar 

  17. Harrison PC, Madwed JB (1999) Anti-LFA-1 alpha reduces the dose of cyclosporin A needed to produce immunosuppression in heterotopic cardiac transplanted rats. J Heart Lung Transplant 18:279–284

    Article  PubMed  CAS  Google Scholar 

  18. Hasegawa Y, Yokono K, Taki T et al (1994) Prevention of autoimmune insulin-dependent diabetes in non-obese diabetic mice by anti-LFA-1 and anti-ICAM-1 mAb. Int Immunol 6:831–838

    Article  PubMed  CAS  Google Scholar 

  19. Fischer A, Friedrich W, Fasth A et al (1991) Reduction of graft failure by a monoclonal antibody (anti-LFA-1 CD11a) after HLA nonidentical bone marrow transplantation in children with immunodeficiencies, osteopetrosis, and Fanconi’s anemia: a European Group for Immunodeficiency/European Group for Bone Marrow Transplantation report. Blood 77:249–256

    PubMed  CAS  Google Scholar 

  20. Whitcup SM, Hikita N, Shirao M et al (1995) Monoclonal antibodies against CD54 (ICAM-1) and CD11a (LFA-1) prevent and inhibit endotoxin-induced uveitis. Exp Eye Res 60:597–601

    Article  PubMed  CAS  Google Scholar 

  21. Whitcup SM, DeBarge LR, Caspi RR, Harning R, Nussenblatt RB, Chan CC (1993) Monoclonal antibodies against ICAM-1 (CD54) and LFA-1 (CD11a/CD18) inhibit experimental autoimmune uveitis. Clin Immunol Immunopathol 67:143–150

    Article  PubMed  CAS  Google Scholar 

  22. Simmons DL (2005) Anti-adhesion therapies. Curr Opin Pharmacol 5:398–404

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez-Amaro R, Mittelbrunn M, Sanchez-Madrid F (2005) Therapeutic anti-integrin (alpha4 and alphaL) monoclonal antibodies: two-edged swords? Immunology 116:289–296

    Article  PubMed  CAS  Google Scholar 

  24. Giblin PA, Lemieux RM (2006) LFA-1 as a key regulator of immune function: approaches toward the development of LFA-1-based therapeutics. Curr Pharm Des 12:2771–2795

    Article  PubMed  CAS  Google Scholar 

  25. Marecki S, Kirkpatrick P (2004) Efalizumab. Nat Rev Drug Discov 3:473–474

    Article  PubMed  CAS  Google Scholar 

  26. Vincenti F, Mendez R, Pescovitz M et al (2007) A phase I/II randomized open-label multicenter trial of efalizumab, a humanized anti-CD11a, anti-LFA-1 in renal transplantation. Am J Transplant 7:1770–1777

    Article  PubMed  CAS  Google Scholar 

  27. Cavazzana-Calvo M, Bordigoni P, Michel G et al (1996) A phase II trial of partially incompatible bone marrow transplantation for high-risk acute lymphoblastic leukaemia in children: prevention of graft rejection with anti-LFA-1 and anti-CD2 antibodies. Societe Francaise de Greffe de Moelle Osseuse. Br J Haematol 93:131–138

    Article  PubMed  CAS  Google Scholar 

  28. Gerstner E, Batchelor T (2007) Primary CNS lymphoma. Expert Rev Anticancer Ther 7:689–700

    Article  PubMed  Google Scholar 

  29. Bayraktar S, Bayraktar UD, Ramos JC, Stefanovic A, Lossos IS (2011) Primary CNS lymphoma in HIV positive and negative patients: comparison of clinical characteristics, outcome and prognostic factors. J Neurooncol 101:257–265

    Article  PubMed  Google Scholar 

  30. Sacktor N (2002) The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy. J Neurovirol 8(Suppl 2):115–121

    Article  PubMed  CAS  Google Scholar 

  31. Assaf N, Hasson T, Hoch-Marchaim H et al (1997) An experimental model for infiltration of malignant lymphoma to the eye and brain. Virchows Arch 431:459–467

    Article  PubMed  CAS  Google Scholar 

  32. Hochman J, Assaf N, Deckert-Schluter M, Wiestler OD, Pe’er J (2001) Entry routes of malignant lymphoma into the brain and eyes in a mouse model. Cancer Res 61:5242–5247

    PubMed  CAS  Google Scholar 

  33. Chan CC, Fischette M, Shen D, Mahesh SP, Nussenblatt RB, Hochman J (2005) Murine model of primary intraocular lymphoma. Invest Ophthalmol Vis Sci 46:415–419

    Article  PubMed  Google Scholar 

  34. Hochman J, Bar-Sinai A, Engelhardt B (2001) Involvement of LFA-1/ICAM-1 in metastasis of lymphoma to the Brain in a mouse model. Proc Am Assoc Cancer Res 42:914

    Google Scholar 

  35. Wang S, Coleman EJ, Pop LM, Brooks KJ, Vitetta ES, Niederkorn JY (2006) Effect of an anti-CD54 (ICAM-1) monoclonal antibody (UV3) on the growth of human uveal melanoma cells transplanted heterotopically and orthotopically in SCID mice. Int J Cancer 118:932–941

    Article  PubMed  CAS  Google Scholar 

  36. Tamatani T, Kotani M, Miyasaka M (1991) Characterization of the rat leukocyte integrin, CD11/CD18, by the use of LFA-1 subunit-specific monoclonal antibodies. Eur J Immunol 21:627–633

    Article  PubMed  CAS  Google Scholar 

  37. Whitcup SM, DeBarge LR, Rosen H, Nussenblatt RB, Chan CC (1993) Monoclonal antibody against CD11b/CD18 inhibits endotoxin-induced uveitis. Invest Ophthalmol Vis Sci 34:673–681

    PubMed  CAS  Google Scholar 

  38. Hochman N, Houri-Haddad Y, Koblinski J et al (2008) Cranberry juice constituents impair lymphoma growth and augment the generation of antilymphoma antibodies in syngeneic mice. Nutr Cancer 60:511–517

    Article  PubMed  Google Scholar 

  39. Zahalka MA, Okon E, Gosslar U, Holzmann B, Naor D (1995) Lymph node (but not spleen) invasion by murine lymphoma is both CD44- and hyaluronate-dependent. J Immunol 154:5345–5355

    PubMed  CAS  Google Scholar 

  40. Yun Z, Menter DG, Nicolson GL (1996) Involvement of integrin alphavbeta3 in cell adhesion, motility, and liver metastasis of murine RAW117 large cell lymphoma. Cancer Res 56:3103–3111

    PubMed  CAS  Google Scholar 

  41. Zahalka MA, Okon E, Naor D (1993) Blocking lymphoma invasiveness with a monoclonal antibody directed against the beta-chain of the leukocyte adhesion molecule (CD18). J Immunol 150:4466–4477

    PubMed  CAS  Google Scholar 

  42. Camp RL, Scheynius A, Johansson C, Pure E (1993) CD44 is necessary for optimal contact allergic responses but is not required for normal leukocyte extravasation. J Exp Med 178:497–507

    Article  PubMed  CAS  Google Scholar 

  43. Scheynius A, Camp RL, Pure E (1993) Reduced contact sensitivity reactions in mice treated with monoclonal antibodies to leukocyte function-associated molecule-1 and intercellular adhesion molecule-1. J Immunol 150:655–663

    PubMed  CAS  Google Scholar 

  44. Cohen S, Haimovich J, Hollander N (2003) Anti-idiotype × anti-LFA-1 bispecific antibodies inhibit metastasis of B cell lymphoma. J Immunol 170:2695–2701

    PubMed  CAS  Google Scholar 

  45. Heusinkveld M, de Vos van Steenwijk PJ, Goedemans R et al (2011) M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J Immunol 187:1157–1165

    Article  PubMed  CAS  Google Scholar 

  46. Bronkhorst IH, Jager MJ (2012) Uveal melanoma: the inflammatory microenvironment. J Innate Immun (in press)

  47. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  48. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  PubMed  CAS  Google Scholar 

  49. Pessoa VF, Ikeda H (1984) Increase in axonal transport in demyelinating optic nerve fibres in the mouse infected with Semliki Forest virus. Brain 107(Pt 2):433–446

    Article  PubMed  Google Scholar 

  50. Friedl P, Weigelin B (2008) Interstitial leukocyte migration and immune function. Nat Immunol 9:960–969

    Article  PubMed  CAS  Google Scholar 

  51. Mempel TR, Henrickson SE, Von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–159

    Article  PubMed  CAS  Google Scholar 

  52. Shimonaka M, Katagiri K, Nakayama T et al (2003) Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J Cell Biol 161:417–427

    Article  PubMed  CAS  Google Scholar 

  53. Smith A, Bracke M, Leitinger B, Porter JC, Hogg N (2003) LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment. J Cell Sci 116:3123–3133

    Article  PubMed  CAS  Google Scholar 

  54. Barenfanger J, MacDonald AB (1974) The role of immunoglobulin in the neutralization of trachoma infectivity. J Immunol 113:1607–1617

    PubMed  CAS  Google Scholar 

  55. Nishibori M, Takahashi HK, Mori S (2003) The regulation of ICAM-1 and LFA-1 interaction by autacoids and statins: a novel strategy for controlling inflammation and immune responses. J Pharmacol Sci 92:7–12

    Article  PubMed  CAS  Google Scholar 

  56. Rutishauser J (2006) The role of statins in clinical medicine–LDL–cholesterol lowering and beyond. Swiss Med Wkly 136:41–49

    PubMed  CAS  Google Scholar 

  57. Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM (2005) Statins and cancer prevention. Nat Rev Cancer 5:930–942

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the A.M.N foundation, Jerusalem (JH) and by the Intramural Research Programs of the National Institutes of Health, National Eye Institute (DS, CCC) and National Cancer Institute (JH, MMG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacob Hochman or Chi-Chao Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochman, J., Shen, D., Gottesman, M.M. et al. Anti-LFA-1 antibodies enhance metastasis of ocular lymphoma to the brain and contralateral eye. Clin Exp Metastasis 30, 91–102 (2013). https://doi.org/10.1007/s10585-012-9512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9512-2

Keywords

Navigation