Skip to main content

Advertisement

Log in

Targeting activated integrin αvβ3 with patient-derived antibodies impacts late-stage multiorgan metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Advanced metastatic disease is difficult to manage and specific therapeutic targets are rare. We showed earlier that metastatic breast cancer cells use the activated conformer of adhesion receptor integrin αvβ3 for dissemination. We now investigated if targeting this form of the receptor can impact advanced metastatic disease, and we analyzed the mechanisms involved. Treatment of advanced multi-organ metastasis in SCID mice with patient-derived scFv antibodies specific for activated integrin αvβ3 caused stagnation and regression of metastatic growth. The antibodies specifically localized to tumor lesions in vivo and inhibited αvβ3 ligand binding at nanomolar levels in vitro. At the cellular level, the scFs associated rapidly with high affinity αvβ3 and dissociated extremely slowly. Thus, the scFvs occupy the receptor on metastatic tumor cells for prolonged periods of time, allowing for inhibition of established cell interaction with natural αvβ3 ligands. Potential apoptosis inducing effects of the antibodies through interaction with caspase-3 were studied as potential additional mechanism of treatment response. However, in contrast to a previous concept, neither the RGD-containing ligand mimetic scFvs nor RGD peptides bound or activated caspase-3 at the cellular or molecular level. This indicates that the treatment effects seen in the animal model are primarily due to antibody interference with αvβ3 ligation. Inhibition of advanced metastatic disease by treatment with cancer patient derived single chain antibodies against the activated conformer of integrin αvβ3 identifies this form of the receptor as a suitable target for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Steeg PS (2008) Heterogeneity of drug target expression among metastatic lesions: lessons from a breast cancer autopsy program. Clin Cancer Res 14(12):3643–3645

    Article  PubMed  Google Scholar 

  2. Cooper CR, Chay CH, Pienta KJ (2002) The role of αvβ3 in prostate cancer progression. Neoplasia 4(3):191–194

    Article  CAS  PubMed  Google Scholar 

  3. Brooks PC, Montgomery AM, Rosenfeld M et al (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79(7):1157–1164

    Article  CAS  PubMed  Google Scholar 

  4. Lim M, Guccione S, Haddix T et al (2005) Αvβ3 integrin in central nervous system tumors. Hum Pathol 36(6):665–669

    Article  CAS  PubMed  Google Scholar 

  5. Felding-Habermann B, O’Toole TE, Smith JW et al (2001) Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci USA 98(4):1853–1858

    Article  CAS  PubMed  Google Scholar 

  6. Desgrosellier JS, Barnes LA, Shields DJ et al (2009) An integrin αvβ3-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med 15(10):1163–1169

    Article  CAS  PubMed  Google Scholar 

  7. Albelda SM, Mette SA, Elder DE et al (1990) Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res 50(20):6757–6764

    CAS  PubMed  Google Scholar 

  8. Gingras MC, Roussel E, Bruner JM, Branch CD, Moser RP (1995) Comparison of cell adhesion molecule expression between glioblastoma multiforme and autologous normal brain tissue. J Neuroimmunol 57(1–2):143–153

    Article  CAS  PubMed  Google Scholar 

  9. Gladson CL, Hancock S, Arnold MM, Faye-Petersen OM, Castleberry RP, Kelly DR (1996) Stage-specific expression of integrin αvβ3 in neuroblastic tumors. Am J Pathol 148(5):1423–1434

    CAS  PubMed  Google Scholar 

  10. Ding Q, Stewart J Jr, Olman MA, Klobe MR, Gladson CL (2003) The pattern of enhancement of Src kinase activity on platelet-derived growth factor stimulation of glioblastoma cells is affected by the integrin engaged. J Biol Chem 278(41):39882–39891

    Article  CAS  PubMed  Google Scholar 

  11. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264(5158):569–571

    Article  CAS  PubMed  Google Scholar 

  12. Fujita Y, Abe R, Shimizu H (2008) Clinical approaches toward tumor angiogenesis: past, present and future. Curr Pharm Des 14(36):3820–3834

    Article  CAS  PubMed  Google Scholar 

  13. Cai W, Chen X (2006) Anti-angiogenic cancer therapy based on integrin αvβ3 antagonism. Anticancer Agents Med Chem 6(5):407–428

    Article  CAS  PubMed  Google Scholar 

  14. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22

    Article  CAS  PubMed  Google Scholar 

  15. Paolillo M, Russo MA, Serra M, Colombo L, Schinelli S (2009) Small molecule integrin antagonists in cancer therapy. Mini Rev Med Chem 9(12):1439–1446

    Article  CAS  PubMed  Google Scholar 

  16. Schottelius M, Laufer B, Kessler H, Wester HJ (2009) Ligands for mapping αvβ3-integrin expression in vivo. Acc Chem Res 42(7):969–980

    Article  CAS  PubMed  Google Scholar 

  17. Felding-Habermann B, Lerner RA, Lillo A et al (2004) Combinatorial antibody libraries from cancer patients yield ligand-mimetic Arg-Gly-Asp-containing immunoglobulins that inhibit breast cancer metastasis. Proc Natl Acad Sci USA 101(49):17210–17215

    Article  CAS  PubMed  Google Scholar 

  18. Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6(5):343–357

    Article  CAS  PubMed  Google Scholar 

  19. Chambers AF (2009) MDA-MB-435 and M14 Cell Lines: identical but not M14 Melanoma? Cancer Res 96(13):5292–5293

    Article  Google Scholar 

  20. Hollestelle A, Schutte M (2009) Comment Re: MDA-MB-435 and M14 cell lines: identical but not M14 Melanoma? Cancer Res 69(19):7893

    Article  CAS  PubMed  Google Scholar 

  21. Deryugina EI, Quigley JP (2008) Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol 130(6):1119–1130

    Article  CAS  PubMed  Google Scholar 

  22. Byzova TV, Kim W, Midura RJ, Plow EF (2000) Activation of integrin αvβ3 regulates cell adhesion and migration to bone sialoprotein. Exp Cell Res 254(2):299–308

    Article  CAS  PubMed  Google Scholar 

  23. Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    Article  CAS  PubMed  Google Scholar 

  24. Ajroud K, Sugimori T, Goldmann WH, Fathallah DM, Xiong JP, Arnaout MA (2004) Binding affinity of metal ions to the CD11b a-domain is regulated by integrin activation and ligands. J Biol Chem 279(24):25483–25488

    Article  CAS  PubMed  Google Scholar 

  25. Xiong JP, Stehle T, Goodman SL, Arnaout MA (2003) Integrins, cations and ligands: making the connection. J Thromb Haemost 1(7):1642–1654

    Article  CAS  PubMed  Google Scholar 

  26. Xiong JP, Stehle T, Goodman SL, Arnaout MA (2003) New insights into the structural basis of integrin activation. Blood 102(4):1155–1159

    Article  CAS  PubMed  Google Scholar 

  27. Buckley CD, Pilling D, Henriquez NV et al (1999) RGD peptides induce apoptosis by direct caspase-3 activation [see comments]. Nature 397(6719):534–539

    Article  CAS  PubMed  Google Scholar 

  28. Roy S, Bayly CI, Gareau Y et al (2001) Maintenance of caspase-3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide. Proc Natl Acad Sci USA 98(11):6132–6137

    Article  CAS  PubMed  Google Scholar 

  29. Anuradha CD, Kanno S, Hirano S (2000) RGD peptide-induced apoptosis in human leukemia HL-60 cells requires caspase-3 activation. Cell Biol Toxicol 16(5):275–283

    Article  CAS  PubMed  Google Scholar 

  30. Aguzzi MS, Giampietri C, De Marchis F et al (2004) RGDS peptide induces caspase 8 and caspase 9 activation in human endothelial cells. Blood 103(11):4180–4187

    Article  CAS  PubMed  Google Scholar 

  31. Janicke RU, Ng P, Sprengart ML, Porter AG (1998) Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem 273(25):15540–15545

    Article  CAS  PubMed  Google Scholar 

  32. Devarajan E, Sahin AA, Chen JS et al (2002) Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21(57):8843–8851

    Article  CAS  PubMed  Google Scholar 

  33. Byzova TV, Rabbani R, D’Souza SE, Plow EF (1998) Role of integrin αvβ3 in vascular biology. Thromb Haemost 80(5):726–734

    CAS  PubMed  Google Scholar 

  34. Stupack DG, Cheresh DA (2004) Integrins and angiogenesis. Curr Top Dev Biol 64:207–238

    Article  CAS  PubMed  Google Scholar 

  35. McNeel DG, Eickhoff J, Lee FT et al (2005) Phase I trial of a monoclonal antibody specific for αvβ3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res 11(21):7851–7860

    Article  CAS  PubMed  Google Scholar 

  36. Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 115(Pt;%19): 3729–3738

    Google Scholar 

  37. Takagi J, Springer TA (2002) Integrin activation and structural rearrangement. Immunol Rev 186:141–163

    Article  CAS  PubMed  Google Scholar 

  38. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23(9):1126–1136

    Article  CAS  PubMed  Google Scholar 

  39. Colcher D, Pavlinkova G, Beresford G, Booth BJ, Choudhury A, Batra SK (1998) Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q J Nucl Med 42(4):225–241

    CAS  PubMed  Google Scholar 

  40. Mao S, Gao C, Lo CH, Wirsching P, Wong CH, Janda KD (1999) Phage-display library selection of high-affinity human single-chain antibodies to tumor-associated carbohydrate antigens sialyl Lewisx and Lewisx. Proc Natl Acad Sci USA 96(12):6953–6958

    Article  CAS  PubMed  Google Scholar 

  41. Krag DN, Fuller SP, Oligino L et al (2002) Phage-displayed random peptide libraries in mice: toxicity after serial panning. Cancer Chemother Pharmacol 50(4):325–332

    Article  CAS  PubMed  Google Scholar 

  42. Jaffe CC (2006) Measures of response: RECIST, WHO, and new alternatives. J Clin Oncol 24(20):3245–3251

    Article  PubMed  Google Scholar 

  43. Therasse P, Eisenhauer EA, Verweij J (2006) RECIST revisited: a review of validation studies on tumour assessment. Eur J Cancer 42(8):1031–1039

    Article  CAS  PubMed  Google Scholar 

  44. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

  45. Agresti A (1990) Categorical data analysis. Sec. 3.3.7. ed

  46. Denault JB, Salvesen GS (2003) Expression, purification, and characterization of caspases. Curr Protoc Protein Sci Chap. 21:Unit 21.13.: Unit

  47. Stennicke HR, Jurgensmeier JM, Shin H et al (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273(42):27084–27090

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. J. Koziol of The Scripps Research Institute for statistical analyses. All animal work was performed in accordance with NIH guidelines and approved by the Institutional Animal Care and Use Committee of The Scripps Research Institute Animal Resources (AAALAC accredited). Grant support: NIH grants CA095458, CA112287 to BFH, CBCRP grants 12NB0176 and 13NB0180 to BFH and DOD grant W81XWH-08-1-0468 to BFH, and fellowships from the Swedish Research Council to KS, and from SG Komen to JSK and ML.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brunhilde Felding-Habermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staflin, K., Krueger, J.S., Hachmann, J. et al. Targeting activated integrin αvβ3 with patient-derived antibodies impacts late-stage multiorgan metastasis. Clin Exp Metastasis 27, 217–231 (2010). https://doi.org/10.1007/s10585-010-9320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-010-9320-5

Keywords

Navigation