Skip to main content

Advertisement

Log in

Terrestrial net primary productivity in India during 1901–2010: contributions from multiple environmental changes

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

India is very important but relatively unexplored region in terms of carbon studies, where significant environmental changes have occurred in the 20th century that can alter terrestrial net primary productivity (NPP). Here, we used a process-based, Dynamic Land Ecosystem Model (DLEM), driven by land cover and land use change (LCLUC), climate change, elevated atmospheric CO2 concentration, atmospheric nitrogen deposition (NDEP), and tropospheric ozone (O3) pollution to estimate terrestrial NPP in India during 1901–2010. Over the country, terrestrial NPP showed significant inter-annual variations ranging 1.2 Pg C year−1 to 1.7 Pg C year−1 during the 1901–2010. Overall, multiple environmental changes have increased terrestrial NPP by 0.23 Pg C year−1. Elevated atmospheric CO2 concentration has increased NPP by 0.29 Pg C; however climate change has offset a portion of terrestrial NPP (0.11 Pg C) during this study period. On an average, terrestrial NPP reduced by 0.12 Pg C year−1 in drought years; when precipitation was 100 mm year−1 lower than long term average, suggesting that terrestrial carbon cycle in India is strongly linked to climate change. LCLUC, including land conversions and cropland management practices, increased terrestrial NPP by 0.043 Pg C year−1 over the country. Tropospheric O3 pollution reduced terrestrial NPP by 0.06 Pg C year−1 and the decrease was comparatively higher in croplands than other biomes after the 1980s. Our results have shown that climate change and tropospheric O3 pollution may partially offset terrestrial NPP increase caused by elevated CO2 concentration, LCLUC, and NDEP over India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ambasht NK, Agrawal M (2003) Effects of enhanced UV-B radiation and tropospheric ozone on physiological and biochemical characteristics of field grown wheat. Biol Plant 47:625–628

    Article  Google Scholar 

  • Bala G, Gopalakrishnan R, Jayaraman M, Nemani R, Ravindranath NH (2011) CO2-fertilization and potential future terrestrial carbon uptake in India. Mitig Adapt Strateg 16:143–160

    Article  Google Scholar 

  • Bala G, Joshi J, Chaturvedi RK, Gangamani HV, Hashimoto H, Nemani R (2013) Trends and variability of AVHRR-derived NPP in India. Remote Sens 5:810–829

    Article  Google Scholar 

  • Banger K, Toor GS, Biswas A, Sidhu SS, Sudhir K (2010) Soil organic carbon fractions after 16 years of applications of fertilizers and organic manure in a typic rhodalfs in semi-arid tropics. Nutr Cycl Agroecosyst 86:391–399

    Article  Google Scholar 

  • Banger K, Tian HQ, Tao B (2013) Contemporary land cover and land use patterns estimated by different regional and global datasets in India. J Land Use Sci 10:95–107. doi:10.1080/1747423X.2013.858786

    Article  Google Scholar 

  • Banger K, Tian HQ, Tao B, Lu C, Ren W, Yang J (2015) Magnitude, spatiotemporal patterns, and controls for soil organic carbon stocks in India during 1901–2010. Soil Sci Soc Am J. doi:10.2136/sssaj2014.11.0456

    Google Scholar 

  • Beig G, Ghude SD, Polade SD, Tyagi B (2008) Threshold exceedances and cumulative ozone exposure indices at tropical suburban site. Geophys Res Lett 35, L02802. doi:10.1029/2007GL031434

    Google Scholar 

  • Bhattacharyya T, Pal DK, Mandal C, Velayutham M (2000) Organic carbon stock in Indian soils and their geographical distribution. Curr Sci 79:655–660

  • Booker F, Muntifering R, McGrath M et al (2009) The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol 51:337–351

    Article  Google Scholar 

  • Chhabra A, Dadhwal VK (2004) Estimating terrestrial net primary productivity over India using satellite data. Curr Sci 86:269–271

    Google Scholar 

  • Dadhwal VK, Nayak SR (1993) A preliminary estimate of biogeochemical cycle of carbon for India. Sci Cult 59(1):9–13

    Google Scholar 

  • Dan L, Ji J, He Y (2007) Use of ISLSCP II data to intercompare and validate the terrestrial net primary production in a land surface model coupled to a general circulation model. J Geophys Res 112, D02S90. doi:10.1029/2006JD007721

    Google Scholar 

  • Das A, Lal R, Patel D, Idapuganti R, Layek J, Ngachan S, Ghosh P, Bordoloi J, Kumar M (2014) Effects of tillage and biomass on soil quality and productivity of lowland rice cultivation by small scale farmers in north eastern India. Soil Tillage Res 143:50–58

    Article  Google Scholar 

  • Davidson EA, Ackerman IL (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161–193

    Article  Google Scholar 

  • Dentener F, Drevet J, Lamarque JF et al (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob Biogeochem Cycles 20, GB4003. doi:10.1029/2005GB002672

    Article  Google Scholar 

  • Dentener F, Stevenson D, Cofala J, Mechler R, Amann M, Bergmaschi P, Raes F, Derwent R (2005) The impact of air pollutants and methane emission controls on tropospheric and radiative forcing: CTM calculations for the period 1990–2030. Atmospheric Chem Phys 5:1731–55

  • DES (Department of Economics and Statistics, Government of India) (2010) http://eands.dacnet.nic.in. Accessed April 2014

  • Entry JA, Sojka RE, Shewmaker G (2002) Managment of irrigated agriculture to increase carbon storage in soils. Soil Sci Soc Am J 66:1957–1964

    Article  Google Scholar 

  • Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  Google Scholar 

  • Felzer B, Reilly J, Melillo J, Kicklighter D, Sarofim M, Wang C, Prinn R, Zhuang Q (2005) Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Clim Chang 73:345–373

    Article  Google Scholar 

  • Feng Z, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob Chang Biol 14:2696–2708

    Google Scholar 

  • Ghosh S, Wilson B, Ghoshal S, Senapati N, Mandal B (2012) Organic amendments influence soil quality and carbon sequestration in the Indo-Gangetic plans of India. Agric Ecosyst Environ 156:134–41

    Article  Google Scholar 

  • Ghude SD, Jena C, Chate DM, Beig G, Pfister GG, Kumar R, Ramanathan V (2014) Reductions in India’s crop yield due to ozone. Geophys Res Lett 41:5685–5691. doi:10.1002/2014GL060930

    Article  Google Scholar 

  • Hingane LS (1991) Some aspects of carbon-dioxide exchange between atmosphere and Indian plant biota. Climate Change 18:425–435

    Article  Google Scholar 

  • Hooda RS, Dye DG, Shibaski R (2003) Evaluating agricultural and nonagricultural carbon fixation over India using remote sensing data. Proc SPIE 4879:108

    Article  Google Scholar 

  • Keeling RF, Piper SC, Heimann M (1996) Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381:218–221

    Article  Google Scholar 

  • Krupa S, McGrath MT, Andersen CP, Booker FL, Burkey KO, Chappelka AH, Chevone BI, Pell EJ, Zilinskas BA (2001) Ambient ozone and plant health. Plant Dis 85:4–12

    Article  Google Scholar 

  • Leff B, Ramankutty N, Foley JA (2004) Geographic distribution of major crops across the world. Glob Biogeochem Cycles 18, GB1009

    Article  Google Scholar 

  • Lobell DB, Sibley A, Ortiz-Monasterio JI (2012) Extreme heat effects on wheat senescence in India. Nat Clim Chang 2:186–189. doi:10.1038/nclimate1356

    Article  Google Scholar 

  • Lu CQ, Tian HQ, Liu ML et al (2012) Effect of nitrogen deposition on China’s terrestrial carbon uptake in the context of multi- factor environmental changes. Ecol Appl 22:53–75

    Article  Google Scholar 

  • Mandal B, Majumder B, Bandyopadhyay PK, Hazra GC, Gangopadhyay A, Samantaray RN, Mishra AK, Chaudhury J, Saha MN, Kundu S (2007) The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India. Glob Chang Biol 13:357–369

    Article  Google Scholar 

  • Mittal ML, Hess PG, Jain SL, Arya BC, Sharma C (2007) Surface ozone in the Indian region. Atmos Environ 41:6572–6584

    Article  Google Scholar 

  • Nataraja KN, Prasad TG, Kumar UM (1998) Effect of elevated carbon dioxide concentration and relative humidity on the growth of forest tree seedlings. Trop Agric Res Ext 1(2):94–97

    Google Scholar 

  • Nayak RK, Patel NR, Dadhwal VK (2010) Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model. Environ Monit Assess 170:195–213

    Article  Google Scholar 

  • Nayak RK, Patel NR, Dadhwal VK (2013) Inter-annual variability and climate control of terrestrial net primary productivity over India. Int J Climatol 33:132–142

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  Google Scholar 

  • Ollinger SV, Aber JD, Reich PB (1997) Simulating ozone effects on forest productivity: interactions among leaf-, canopy-, and stand-level processes. Ecol Appl 7:1237–1251

    Article  Google Scholar 

  • Pan S, Tian H, Dangal S, Ouyang Z, Tao B, Ren W, Lu C, Wang X, Running S (2014) Modeling and monitoring terrestrial primary production in a changing global environment: toward a multi-scale synthesis of observation and simulation. Adv Meteorol. doi:10.1155/2014/965936

  • Pan S, Tian H, Dangal S, Ouyang Z, Lu C, Yang J, Ren W, Tao B, Banger K, Yang Q, and Zhang B (2015) Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J Geogr Sci 25(9):1027–1044. doi:10.1077/s11442-015-1217-4

  • Panigrahy RK, Panigrahy S, Parihar JS (2004) Spatiotemporal pattern of agro-ecosystem net primary productivity of India: a preliminary analysis using spot Vgt data. Int Symp Geospatial Database Sustain Dev, Goa 36(4):724–729

    Google Scholar 

  • Prasad AK, Sarkar S, Singh RP, Kafatos M (2007) Inter-annual variability of vegetation cover and rainfall over India. Adv Space Res 39(1):79–87

    Article  Google Scholar 

  • Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91

    Article  Google Scholar 

  • Ren W, Tian H, Tao B, Chappelka A, Sun G, Lu C, Liu M, Chen G, Xu X (2011) Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems. Glob Ecol Biogeogr 20:391–406

    Article  Google Scholar 

  • Ren W, Tian HQ, Tao B, Huang Y, Pan SF (2012) China’s crop productivity and soil carbon storage as influenced by multifactor global change. Glob Chang Biol 18:2945–2957

    Article  Google Scholar 

  • Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appl 1:157–167

    Article  Google Scholar 

  • Scurlock JMO, Cramer W, Olson RJ, Parton WJ, Prince SD (1999) Terrestrial NPP: toward a consistent data set for global model evaluation. Ecol Appl 9:913–919

    Google Scholar 

  • Singh RP, Rovshan S, Goroshi SK, Panigrahy S, Parihar JS (2011) Spatial and temporal variability of Net primary productivity (NPP) over terrestrial biosphere of India using NOAA-AVHRR based GloPEM model. J Indian Soc Remote Sens 39:345–353

    Article  Google Scholar 

  • Thornley JHM, Cannell MGR (2000) Modelling the components of plant respiration: representation and realism. Ann Bot 85:55–67

    Article  Google Scholar 

  • Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich JVK III, Moore B III, Vörösmarty CJ (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396(6712):664–667. doi:10.1038/25328

    Article  Google Scholar 

  • Tian HQ, Melillo JM, Kicklighter DW, McGuire AD, Helfrich J, Moore B III, Vörösmarty CJ (2000) Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Glob Ecol Biogeogr 9:315–336

    Article  Google Scholar 

  • Tian HQ, Melillo JM, Kicklighter DW, Pan S, Liu J, McGuire AD, Moore B III (2003) Regional carbon dynamics in monsoon Asia and its implications to the global carbon cycle. Glob Planet Chang 37:201–217

    Google Scholar 

  • Tian HQ, Chen G, Liu M, Zhang C, Sun G, Lu C, Xu X, Ren W, Pan S, Chappelka A (2010) Model estimates of ecosystem net primary productivity, evapotranspiration, and water use efficiency in the southern United States during 1895–2007. For Ecol Manag 259:1311–1327

    Article  Google Scholar 

  • Tian H, Lu C, Chen G, Xu X, Liu M, Ren W, Tao B, Sun G, Pan S, Liu J (2011) Climate and land use controls over terrestrial water use efficiency in monsoon Asia. Ecohydrology 4:322–340

    Article  Google Scholar 

  • Tian H, Lu C, Melillo J, Ren W, Huang Y, Xu X, Liu M, Zhang C, Chen G, Pan S, Liu J, Reilly J (2012) Food benefit and climate warming potential of nitrogen fertilizer use in China. Environ Res Lett 7:8. doi:10.1088/1748-9326/7/4/044020

    Article  Google Scholar 

  • Tian HQ, Banger K, Bo T, Dadhwal VK (2014) History of land use in India during 1880–2010: large-scale land transformations reconstructed from satellite data and historical archives. Glob Planet Chang 121:78–88

    Article  Google Scholar 

  • Tjoelker MG, Volin JC, Oleksyn J, Reich PB (1995) Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment. Plant Cell Environ 18:895–905

    Article  Google Scholar 

  • Tripathi SC (2010) Behavior of spring wheat genotypes under late and very late situations in northwestern India. Annu Wheat Newsl 56:65–67

    Google Scholar 

  • Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao M, Costa MH, Kirschbaum AA, Ham JM, Saleska SR, Ahl DE (2006) Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens Environ 102:282–292

    Article  Google Scholar 

  • Vanaja M, Yadav SK, Archana G et al (2011) Response of C4 (maize) and C3 (sunflower) crop plants to drought stress and enhanced carbon dioxide concentration. Plant Soil Environ 57:207–215

    Google Scholar 

  • Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442

    Article  Google Scholar 

  • Zaidi PH and Singh NN (2005) Directorate of maize research, New Delhi, pp. 1–145

Download references

Acknowledgments

This study has been supported by NASA Land Cover and Land Use Change Program (NNX08AL73G) and US National Science Foundation Grants (AGS-1243232, CNS-1059376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanqin Tian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banger, K., Tian, H., Tao, B. et al. Terrestrial net primary productivity in India during 1901–2010: contributions from multiple environmental changes. Climatic Change 132, 575–588 (2015). https://doi.org/10.1007/s10584-015-1448-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-015-1448-5

Keywords

Navigation