Skip to main content

Advertisement

Log in

Correlation between climate sensitivity and aerosol forcing and its implication for the “climate trap”

A Letter

  • Letter
  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Climate sensitivity and aerosol forcing are dominant uncertain properties of the global climate system. Their estimates based on the inverse approach are interdependent as historical temperature records constrain possible combinations. Nevertheless, many literature projections of future climate are based on the probability density of climate sensitivity and an independent aerosol forcing without considering the interdependency of such estimates. Here we investigate how large such parameter interdependency affects the range of future warming in two distinct settings: one following the A1B emission scenario till the year 2100 and the other assuming a shutdown of all greenhouse gas and aerosol emissions in the year 2020. We demonstrate that the range of projected warming decreases in the former case, but considerably broadens in the latter case, if the correlation between climate sensitivity and aerosol forcing is taken into account. Our conceptual study suggests that, unless the interdependency between the climate sensitivity and aerosol forcing estimates is properly considered, one could underestimate a risk involving the “climate trap”, an unpalatable situation with a high climate sensitivity in which a very drastic mitigation may counter-intuitively accelerate the warming by unmasking the hidden warming due to aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andreae MO, Jones CD, Cox PM (2005) Strong present-day aerosol cooling implies a hot future. Nature 435:1187–1190. doi:10.1038/nature03671

    Article  Google Scholar 

  • Archer D, Eby M, Brovkin V, Ridgwell A, Cao L, Mikolajewicz U, Caldeira K, Matsumoto K, Munhoven G, Montenegro A, Tokos K (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Annu Rev Earth Planet Sci 37:117–134. doi:10.1146/annurev.earth.031208.100206

    Article  Google Scholar 

  • Armour KC, Roe GH (2011) Climate commitment in an uncertain world. Geophys Res Lett 38:L01707. doi:10.1029/2010GL045850

    Article  Google Scholar 

  • Bender FA-M (2008) A note on the effect of GCM tuning on climate sensitivity. Environ Res Lett 3:014001. doi:10.1088/1748-9326/3/1/014001

    Article  Google Scholar 

  • Brasseur GP, Roeckner E (2005) Impact of improved air quality on the future evolution of climate. Geophys Res Lett 32:L23704. doi:10.1029/2005GL023902

    Article  Google Scholar 

  • Caldeira K, Jain A, Hoffert M (2003) Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 299:2052–2054. doi:10.1126/science.1078938

    Article  Google Scholar 

  • Chylek P, Lohmann U, Dubey M, Mishchenko M, Kahn R, Ohmura A (2007) Limits on climate sensitivity derived from recent satellite and surface observations. J Geophys Res 112:D24S04. doi:10.1029/2007JD008740

    Article  Google Scholar 

  • Forest CE, Stone PH, Sokolov AP, Allen MR, Webster MD (2002) Quantifying uncertainties in climate system properties with the use of recent climate observations. Science 295:113–117. doi:10.1126/science.1064419

    Article  Google Scholar 

  • Frame DJ, Booth BBB, Kettleborough JA, Stainforth DA, Gregory JM, Collins M, Allen MR (2005) Constraining climate forecasts: the role of prior assumptions. Geophys Res Lett 32:L09702. doi:10.1029/2004GL022241

    Article  Google Scholar 

  • Frölicher TL, Joos F (2010) Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model. Clim Dyn 35:1439–1459. doi:10.1007/s00382-009-0727-0

    Article  Google Scholar 

  • Haerter JO, Roeckner E, Tomassini L, von Storch J-S (2009) Parametric uncertainty effects on aerosol radiative forcing. Geophys Res Lett 36:L15707. doi:10.1029/2009GL039050

    Article  Google Scholar 

  • Hansen J et al (2005) Efficacy of climate forcings. J Geophys Res 110:D18104. doi:10.1029/2005JD005776

    Article  Google Scholar 

  • Hare B, Meinshausen M (2006) How much warming are we committed to and how much can be avoided? Clim Change 75:111–149. doi:10.1007/s10584-005-9027-9

    Article  Google Scholar 

  • Harvey LDD, Kaufmann RK (2002) Simultaneously constraining climate sensitivity and aerosol radiative forcing. J Climate 15:2837–2861. doi:10.1175/1520-442(2002) 015%3C2837:SCCSAA%3E2.0.CO;2

    Article  Google Scholar 

  • IPCC (2000) In: Nakićenović N, Swart R (eds) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge Univ. Press, UK

    Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, p 881

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 996

    Google Scholar 

  • Johansson D (2011) Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles. Clim Change 108:107–134. doi:10.1007/s10584-010-9969-4

    Article  Google Scholar 

  • Joos F, Prentice C, Sitch S, Meyer R, Hooss G, Plattner G-K, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Glob Biogeochem Cycles 15:891–907. doi:10.1029/2000GB001375

    Article  Google Scholar 

  • Kerr RA (2007) Another global warming icon comes under attack. Science 317:28–29. doi:10.1126/science.317.5834.28a

    Article  Google Scholar 

  • Kiehl JT (2007) Twentieth century climate model response and climate sensitivity. Geophys Res Lett 34:L22710. doi:10.1029/2007GL031383

    Article  Google Scholar 

  • Knutti R (2008) Why are climate models reproducing the observed global surface warming so well? Geophys Res Lett 35:L18704. doi:10.1029/2008GL034932

    Article  Google Scholar 

  • Knutti R, Hegerl GC (2008) The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat Geosci 1:735–743. doi:10.1038/ngeo337

    Article  Google Scholar 

  • Knutti R, Stocker TF, Joos F, Plattner G-K (2002) Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416:719–723. doi:10.1038/416719a

    Article  Google Scholar 

  • Knutti R, Allen MR, Friedlingstein P, Gregory JM, Hegerl GC, Meehl GA, Meinshausen M, Murphy JM, Plattner G-K, Raper SCB, Stocker TF, Stott PA, Teng H, Wigley TML (2008) A review of uncertainties in global temperature projections over the twenty-first century. J Climate 21:2651–2663. doi:10.1175/2007JCLI2119.1

    Article  Google Scholar 

  • Kriegler E (2005) Imprecise probability analysis for integrated assessment of climate change. PhD dissertation, Potsdam Universität, p. 258. http://www.pik-potsdam.de/~kriegler/

  • Mackenzie FT, Lerman A (2006) Carbon in the geobiosphere: earth’s outer shell. Springer, Dordrecht, p 402

    Google Scholar 

  • Matthews HD, Weaver AJ (2010) Committed climate warming. Nat Geosci 3:142–143. doi:10.1038/ngeo813

    Article  Google Scholar 

  • Meinshausen M et al (2009) Greenhouse-gas emission targets for limiting global warming to 2°C. Nature 458:1158–1162. doi:10.1038/nature08017

    Article  Google Scholar 

  • Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantifying uncertainty in model predictions. Nature 430:768–772. doi:10.1038/nature02771

    Article  Google Scholar 

  • Penner JE, Prather MJ, Isaksen ISA, Fuglestvedt JS, Klimont Z, Stevenson DS (2010) Short-lived uncertainty? Nat Geosci 3:587–588. doi:10.1038/ngeo932

    Article  Google Scholar 

  • Plattner G-K et al (2008) Long-term climate commitments projected with climate–carbon cycle models. J Climate 21:2721–2751. doi:10.1175/2007JCLI1905.1

    Article  Google Scholar 

  • Ramanathan V, Feng Y (2008) On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. PNAS 105:14245–14250. doi:10.1073/pnas.0803838105

    Article  Google Scholar 

  • Rive N, Torvanger A, Berntsen T, Kallbekken S (2007) To what extent can a long-term temperature target guide near-term climate change commitments? Clim Change 82:373–391. doi:10.1007/s10584-006-9193-4

    Article  Google Scholar 

  • Roe GH, Baker MB (2007) Why is climate sensitivity so unpredictable? Science 318:629–632. doi:10.1126/science.1144735

    Article  Google Scholar 

  • Schwartz SE, Charlson RJ, Rodhe H (2007) Quantifying climate change—too rosy a picture? Nature Reports. Clim Change 2:23–24. doi:10.1038/climate.2007.22

    Google Scholar 

  • Sokolov AP, Stone PH, Forest CE, Prinn R, Sarofim MC, Webster M, Paltsev S, Schlosser CA, Kicklighter D, Dutkiewicz S, Reilly J, Wang C, Felzer B, Melillo JM, Jacoby HD (2009) Probabilistic forecast for twenty-first-century climate based on uncertainties in emissions (Without Policy) and climate parameters. J Climate 22:5175–5204. doi:10.1175/2009JCLI2863.1

    Article  Google Scholar 

  • Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. PNAS 106:1704–1709. doi:10.1073/pnas.0812721106

    Article  Google Scholar 

  • Solomon S, Daniel JS, Sanford TJ, Murphy DM, Plattner G-K, Knutti R, Friedlingstein P (2010) Persistence of climate changes due to a range of greenhouse gases. PNAS 107:18354–18359. doi:10.1073/pnas.1006282107

    Article  Google Scholar 

  • Tanaka K (2008) Inverse estimation for the simple earth system model ACC2 and its applications. PhD dissertation, Hamburg Universität, International Max Planck Research School on Earth System Modelling, Hamburg, p. 296. http://www.sub.uni-hamburg.de/opus/volltexte/2008/3654/

  • Tanaka K, Kriegler E, Bruckner T, Hooss G, Knorr W, Raddatz T (2007) Aggregated carbon cycle, atmospheric chemistry, and climate model (ACC2): description of the forward and inverse modes. Reports on earth system science, no 40. Max Planck Institute for Meteorology, p. 188. http://www.mpimet.mpg.de/wissenschaft/publikationen/erdsystemforschung.html

  • Tanaka K, O’Neill BC, Rokityanskiy D, Obersteiner M, Tol RSJ (2009a) Evaluating global warming potentials with historical temperature. Clim Change 96:443–466. doi:10.1007/s10584-009-9566-6

    Article  Google Scholar 

  • Tanaka K, Raddatz T, O’Neill BC, Reick CH (2009b) Insufficient forcing uncertainty underestimates the risk of high climate sensitivity. Geophys Res Lett 36:L16709. doi:10.1029/2009GL039642

    Article  Google Scholar 

  • Urban NM, Keller K (2010) Probabilistic hindcasts and projections of the coupled climate, carbon cycle and Atlantic meridional overturning circulation system: a Bayesian fusion of century-scale observations with a simple model. Tellus A 62:737–750. doi:10.1111/j.1600-0870.2010.00471.x

    Google Scholar 

  • Wigley TML (1991) Could reducing fossil-fuel emissions cause global warming? Nature 349:503–506. doi:10.1038/349503a0

    Article  Google Scholar 

  • Wigley TML, Raper SCB (2001) Interpretation of high projections for global-mean warming. Science 293:451–454. doi:10.1126/science.1061604

    Article  Google Scholar 

Download references

Acknowledgments

Comments by Kyle Armour, Terje Berntsen, Andreas Chlond, Reto Knutti, Nathan Rive, and several anonymous reviewers at various stages are very useful to refine the paper. K. Tanaka is supported by the IIASA Postdoctoral Fellowship, the Norwegian Research Council under project 184840/S30 (CLIMSENS—Constraining total feedback of the climate system by observations and models), and the Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme (Proposal N° 255568 under FP7-PEOPLE-2009-IEF).

Conflict of interests

The authors declare no competing financial interests

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumasa Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Raddatz, T. Correlation between climate sensitivity and aerosol forcing and its implication for the “climate trap”. Climatic Change 109, 815–825 (2011). https://doi.org/10.1007/s10584-011-0323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-011-0323-2

Keywords

Navigation