Skip to main content

Advertisement

Log in

Potential climatic transitions with profound impact on Europe

Review of the current state of six ‘tipping elements of the climate system’

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnell NW (2004) Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob Environ Change 14:31–52

    Article  Google Scholar 

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla Ch, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2006) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27(1):17–46

    Article  Google Scholar 

  • Bamber JL, Riva REM, Vermeersen BLA, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324(5929):901–903

    Article  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31

    Article  Google Scholar 

  • Born A, Levermann A (2010) The 8ka event: abrupt transition of the subpolar gyre toward a modern North Atlantic circulation. Geochem Geophys Geosyst 11:Q06011

    Article  Google Scholar 

  • Braithwaite RJ, Raper SCB (2002) Glaciers and their contribution to sea level change. Phys Chem Earth 27(32–34):1445–1454

    Google Scholar 

  • C.Amstrup S, DeWeaver ET, Douglas DC, Marcot BG, Durner GM, Bitz CM, Bailey DA (2010) Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468:955–960

    Article  Google Scholar 

  • CAPE-Last Interglaicial Project Members (2006) Last interglacial Arctic warmth confirms polar amplification of climate change. Quat Sci Rev 25:1383–1400

    Article  Google Scholar 

  • Chen JL, Wilson CR, Blankenship D, Tapley BD (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat Geosci 2:859–862

    Article  Google Scholar 

  • Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602

    Article  Google Scholar 

  • Clark PU, Pisias NG, Stocker TF, Weaver AJ (2002) The role of the thermohaline circulation in abrupt climate change. Nature 415:863–869

    Article  Google Scholar 

  • Cogley G (2009) Geodetic and direct mass balance measurements: comparison and joint analysis. Ann Glaciol 50(50):96–100

    Article  Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703

    Article  Google Scholar 

  • Dameris M, Grewe V, Hein R, Schnadt C (1998) Assessment of the future development of the ozone layer. Geophys Res Lett 25:3579–3582

    Article  Google Scholar 

  • Deser C, Teng H (2008) Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing 1979–2007. Geophys Res Lett 35:L02504

    Article  Google Scholar 

  • Dickson B, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J T (2002) Rapid freshening of the deep North Altantic Ocean over the past four decades. Nature 416:832–837

    Article  Google Scholar 

  • Drijfhout SS, Weber SL, van der Swaluw E (2010) The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Clim Dyn. doi:10.1007/s00382-010-0930-z

    Google Scholar 

  • Eckhardt K, Ulbrich U (2005) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284:244–252

    Article  Google Scholar 

  • Eisenmann I, Wettlaufer JS (2009) Nonlinear threshold behavior during the loss of Arctic sea ice. Proc Natl Acad Sci 106(1):28–32

    Article  Google Scholar 

  • Evans SJ, Toumi R, Harris JE, Chipperfield MP, Russell JM (1998) Trends in stratospheric humidity and the sensitivity of ozone to these trends. J Geophys Res 103:8715–8725

    Article  Google Scholar 

  • Farinotti D, Huss M, Bauder A, Funk M (2009) An estimate of the glacier ice volume in the the Swiss Alps. Glob Planet Change 68(3):225–231

    Article  Google Scholar 

  • Forster PM, Shine KP (2002) Assessing the climate impact of trends in stratospheric water vapor. Geophys Res Lett 29(6). doi:10.1029/2001GL013909

    Google Scholar 

  • Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457

    Article  Google Scholar 

  • Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158

    Article  Google Scholar 

  • Goosse H, Arzel O, Bitz CM, de Montety A, Vancoppenolle M (2009) Increased variability of the Arctic summer ice extent in a warmer climate. Geophys Res Lett 36:L23702

    Article  Google Scholar 

  • Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett 33:L02706

    Article  Google Scholar 

  • Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Philos Trans R Soc A 364:1709–1731

    Article  Google Scholar 

  • Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703

    Article  Google Scholar 

  • Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res 112:F02S18

    Article  Google Scholar 

  • Haas C, Pfaffling A, Hendricks S, Rabenstein L, Etienne J-L, Rigor I (2008) Reduced ice thickness in Arctic Transpolar Drift favors rapid ice retreat. Geophys Res Lett 35:L17501

    Article  Google Scholar 

  • Haeberli W, Hoelzle M (1995) Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps. Ann Glaciol 21:206–212

    Google Scholar 

  • Haeberli W, Hoelzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann Glaciol 46:150–160

    Article  Google Scholar 

  • Harris C, Arenson LU, Christiansen HH, Etzelmüller B, Frauenfelder R, Gruber S, Haeberli W, Hauck C, Hölzle M, Humlum O, Isaksen K, Kääb A, Kern-Lütschg MA, Lehning M, Matsuoka N, Murton JB, Nötzli J, Phillips M, Ross N, Seppälä M, Springman SM, Vonder Mühll D (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci Rev 92:117–171

    Article  Google Scholar 

  • Harris NR P, Kyrö E, Staehelin J, Brunner D, Andersen S-B, Godin-Beekmann S, Dhomse S, Hadjinicolaou P, Hansen G, Isaksen I, Jrrar A, Karpetchko A, Kivi R, Knudsen B, Krizan P, Lastovicka J, Maeder J, Orsolini Y, Pyle JA, Rex M, Vanicek K, Weber M, Wohltmann I, Zanis P, Zerefos C (2008) Ozone trends at northern mid- and high latitudes—a European perspective. Ann Geophys 26:1207–1220

    Article  Google Scholar 

  • Hattermann T, Levermann A (2010) Response of Southern Ocean circulation to global warming may enhance basal ice shelf melting around Antarctica. Clim Dyn 35:741–756

    Article  Google Scholar 

  • Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the atlantic subpolar gyre on the thermohaline circulation. science 309:1841–1844

    Article  Google Scholar 

  • Hock R, Jansson P, Braun L (2005) Modelling the response of mountain glacier discharge to climate warming. In: Global change series. Springer, New York, pp 243–252

    Google Scholar 

  • Hoelzle M, Haeberli W, Dischl M, Peschke W (2003) Secular glacier mass balances derived from cumulative glacier length changes. Glob Planet Change 36(4):295–306

    Article  Google Scholar 

  • Hofmann M, Rahmstorf S (2009) On the stability of the Atlantic meridional overturning circulation. Proc Natl Acad Sci 106(49):20584–20589

    Article  Google Scholar 

  • Holland DM, Thomas RH, de Young B, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat Geosci 1(10):659–664

    Article  Google Scholar 

  • Holland MM, Bitz CM, Tremblay B (2006) Future abrupt reductions in the summer Arctic sea ice. Geophys Res Lett 33:L23503

    Article  Google Scholar 

  • Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea-ice minima on anomalously could Eurasian winters. Geophys Res Lett 36:L08707

    Article  Google Scholar 

  • Hu A, Meehl GA, Han W, Yin J (2009) The deep-ocean heat uptake in transient climate change. Geophys Res Lett 36:L10707

    Article  Google Scholar 

  • Huss M, Farinotti D, Bauder A, Funk M (2008) Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol Process 22(19):3888–3902

    Article  Google Scholar 

  • Huss M, Funk M, Ohmura A (2009) Strong Alpine glacier melt in the 1940s due to enhanced solar radiation. Geophys Res Lett 36:L23501

    Article  Google Scholar 

  • Huss M, Hock R, Bauder A, Funk M (2010) 100-year glacier mass changes in the Swiss Alps linked to the Atlantic multidecadal oscillation. Geophys Res Lett 37:L10501

    Article  Google Scholar 

  • Huybrechts P, Letreguilly A, Reeh N (2004) Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Glob Planet Change 83. doi:10.1016/j.gloplacha.2003.11.011

    Google Scholar 

  • Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. Chap. Palaeoclimate

  • Jones A, Urban J, Murtagh DP, Eriksson P, Brohede S, Haley C, Degenstein D, Bourassa A, von Savigny C, Sonkaew T, Rozanov A, Bovensmann H, Burrows J (2009) Evolution of stratospheric ozone and water vapour time series studied with satellite measurements. Atmos Chem Phys 9:6055–6075

    Article  Google Scholar 

  • Joughin I, Abdalati W, Fahnestock M (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 432:608–611

    Article  Google Scholar 

  • Joughin I, Tulaczyk S, Bamber JL, Blankenship D, Holt J, Scambos T, Vaughan D (2009) Basal conditions for Pine Island and Thwaites Glaciers determined using satellite and airborne data. J Glaciol 55(190):245–257

    Article  Google Scholar 

  • Jouvet G, Huss M, Blatter H, Picasso M, Rappaz J (2009) Numerical simulation of Rhonegletscher from 1874 to 2100. J Comput Phys 228(17):6426–6439

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Esch M, Roeckner E, Marotzke J (2006) Will Greenland melting halt the thermohaline circulation? Geophys Res Lett 33:L17708

    Article  Google Scholar 

  • Kaser G, Cogley JG, Dyurgerov MB, Meier MF, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys Res Lett 33(19):L19501

    Article  Google Scholar 

  • Kattsov VM, Källén E (2004) Future climate change: modeling and scenarios for the Arctic. Cambridge University Press, Cambridge. http://www.acia.uaf.edu/

    Google Scholar 

  • Kay JE, L’Ecuyer T, Gettelman A, Stephens G, O’Dell C (2008) The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys Res Lett 35:L08503

    Article  Google Scholar 

  • Kirk-Davidoff DB, Hintsa EJ, Anderson JG, Keith DW (1999) The effect of climate change on ozone depletion through changes in stratospheric water vapor. Nature 402:399–401

    Article  Google Scholar 

  • Kopp RE, Mitrovica JX, Griffies SM, Yin J, Hay CC, Stouffer RJ (2010) The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Clim Change 103(3–4):619–625

    Article  Google Scholar 

  • Kriegler E, Hall J, Held H, Dawson R, Schellnhuber HJ (2009) Imprecise probability assessment of tipping points in the climate system. Proc Natl Acad Sci 106(13):5041–5046

    Article  Google Scholar 

  • Kuhlbrodt T, Rahmstorf S, Zickfeld K, Vikebo FB, Sundby S, Hofmann M, Link PM, Bondeau A, Cramer W, Jaeger C (2009) An integrated assessment of changes in the thermohaline circulation. Clim Change 96:489–537

    Article  Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Lashof DA (1989) The dynamic greenhouse: feedback processes that may influence future concentrations of atmospheric trace gases and climate change. Clim Change 14:213–242

    Article  Google Scholar 

  • Laurian A, Drijfhout SS, Hazeleger W, Hurk B (2009) Response of the Western European climate to a collapse of the thermohaline circulation. Clim Dyn 34(5):689–697

    Article  Google Scholar 

  • Lawrence DM, Slater AG (2005) A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett 32:L24401

    Article  Google Scholar 

  • Le Meur E, Gerbaux M, Schäfer M, Vincent C (2007) Disappearance of an Alpine glacier over the 21st century simulated from modeling its future surface mass balance. Earth Planet Sci Lett 261:367–374

    Article  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1786–1793

    Article  Google Scholar 

  • Lenton TM, Footitt A, Dlugolecki A (2009) Major Tipping Points in the Earth’s climate system and consequences for the insurance sector. Tech rept, WWF & Allianz. http://assets.panda.org/downloads/plugin_tp_final_report.pdf

  • Levermann A, Born A (2007) Bistability of the subpolar gyre in a coarse resolution climate model. Geophys Res Lett 34:L24605

    Article  Google Scholar 

  • Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354

    Article  Google Scholar 

  • Levermann A, Mignot J, Nawrath S, Rahmstorf S (2007) The role of northern sea ice cover for the weakening of the thermohaline circulation under global warming. J Clim 20:4160–4171

    Article  Google Scholar 

  • Levermann A, Schewe J, Petoukhov V, Held H (2009) Basic mechanism for abrupt monsoon transitions. Proc Natl Acad Sci 106(49):20572–20577

    Article  Google Scholar 

  • Lindsay R, Zhang J, Schweiger A, Steele M, Stern H (2009) Arctic Sea ice retreat in 2007 follows thinning trend. J Climate 22:165–176

    Article  Google Scholar 

  • Loeng H (2004) Marine systems. Cambridge University Press, Cambridge. http://www.acia.uaf.edu/

  • Manney G, Krüger K, Pawson S, Schwartz M, Daffer W, Mlynczak M, Livesey N, Remsberg E, Russell J III, Waters J (2005) The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J Geophys Res 110:D04107

    Article  Google Scholar 

  • Manney G, Krüger K, Pawson S, Schwartz M, Daffer W, Mlynczak M, Livesey N, Remsberg E, Russell J III, Waters J (2008) The evolution of the stratopause during the 2006 major warming: satellite data and assimilated meteorological analyses. J Geophys Res 113:D11115

    Article  Google Scholar 

  • Manney G, Schwartz M, Krüger K, Santee M, Pawson S, Lee J, Daffer W, Fuller R, Livesey N (2009) Aura microwave limb sounder observations of dynamics and transport during the record-breaking. Geophys Res Lett 36:L12815

    Article  Google Scholar 

  • Maslanik J, Drobot S, Fowler C, Emery W, Barry R (2007) On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys Res Lett 34:L03711

    Article  Google Scholar 

  • McManus JF, Francois R, Gherardi JM, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Meier MF, Dyurgerov MB, Rick UK, ÓNeel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science 317(Aug):1064

    Article  Google Scholar 

  • Miller JR, Russell GL (2000) Projected impact of climate change on the freshwater and salt budgets of the Arctic Ocean by a global climate model. Geophys Res Lett 27:1183–1186

    Article  Google Scholar 

  • Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029

    Article  Google Scholar 

  • Naish T, Powell R, Levy R, Wilson G, Scherer R, Talarico F, Krissek L, Niessen F, Pompilio M, Wilson T, Carter L, Deconto R, Huybers P, McKay R, Pollard D, Ross J, Winter D, Barrett P, Browne G, Cody R, Cowan E, Crampton J, Dunbar G, Dunbar N, Florindo F, Gebhardt C, Graham I, Hannah M, Hansaraj D, Harwood D, Helling D, Henrys S, Hinnov L, Kuhn G, Kyle P, Läufer A, Maffioli P, Magens D, Mandernack K, McIntosh W, Millan C, Morin R, Ohneiser C, Paulsen T, Persico D, Raine I, Reed J, Riesselman C, Sagnotti L, Schmitt D, Sjunneskog C, Strong P, Taviani M, Vogel S, Wilch T, Williams T (2009) Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458(Mar):322–328

    Article  Google Scholar 

  • Noetzli J, Gruber S (2009) Transient thermal effects in Alpine permafrost. The Cryosphere 3:85–99

    Article  Google Scholar 

  • Notz D (2009) The future of ice sheets and sea ice: between reversible retreat and unstoppable loss. Proc Natl Acad Sci 106(49):20590–20595

    Article  Google Scholar 

  • Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:241–244

    Article  Google Scholar 

  • Oerlemans J, Dyurgerov M, van de Wal RSW (2007) Reconstructing the glacier contribution to sea-level rise back to 1850. The Cryosphere 1:59–65

    Article  Google Scholar 

  • Oerlemans J, Giessen RH, van den Broeke MR (2009) Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland). J Glaciol 55(192):729–736

    Article  Google Scholar 

  • Ogi M, Rigor IG, McPhee MG, Wallace JM (2008) Summer retreat of Arctic sea ice: role of summer winds. Geophys Res Lett 35:L24701

    Article  Google Scholar 

  • Oltmans SJ, Hofmann DJ (1995) Increase in lower-stratospheric water vapor at a mid-latitude Northern Hemisphere site from 1981–1994. Nature 374:146–149

    Article  Google Scholar 

  • Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311(5768):1747–1750

    Article  Google Scholar 

  • Parkinson CL, Cavalieri DJ, Gloersen P, Zwally HJ, Comiso JC (1999) Arctic sea ice extents, areas, and trends, 1978–1996. J Geophys Res 104:20837–20836

    Article  Google Scholar 

  • Paul F, Haeberli W (2008) Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys Res Lett 35:L21502

    Article  Google Scholar 

  • Paul F, Machguth H, Kääb A (2005) On the impact of glacier albedo under conditions of extreme glacier melt: the summer of 2003 in the Alps. EARSeL eProc 4(2):139–149

    Google Scholar 

  • Perovich DK, Richter-Menge JA, Jones KF, Light B (2008) Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007. Geophys Res Lett 35:L11501

    Article  Google Scholar 

  • Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115:D21111

    Article  Google Scholar 

  • Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321:1340–1343

    Article  Google Scholar 

  • Pollard D, Deconto RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458(Mar):329–332

    Article  Google Scholar 

  • Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975

    Article  Google Scholar 

  • Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811

    Article  Google Scholar 

  • Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214

    Article  Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370

    Article  Google Scholar 

  • Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich I, Knutti R, Lohmann G, Marsh B, Mysak LA, Wang Z, Weaver A (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32:L23605

    Article  Google Scholar 

  • Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709

    Article  Google Scholar 

  • Randel WJ, Wu F, Oltmans SJ, Rosenlof K, Nedoluha G (2004) Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J Atmos Sci 61:2133–2148

    Article  Google Scholar 

  • Rex M, Salawitch RJ, Harris NRP, Braathen GO, Schulz A, Deckelmann H, Chipperfield M, Sinnhuber BM, Reimer E, Alfier R, Bevilacqua R, Hoppel K, Fromm M, Lumpe J, Küllmann H, Kleinböhl A, Bremer H, von König M, Künzi K, Toohey D, Vömel H, Richard E, Aikin K, Jost H, Greenblatt JB, Loewenstein M, Podolske JR, Webster CR, Flesch GJ, Scott DC, Herman RL, Elkins JW, Ray EA, Moore FL, Hurst DF, Romashkin P, Toon GC, Sen B, Margitan JJ, Wennberg P, Neuber R, Allart M, Bojkov RB, Claude H, Davies J, Davies W, deBacker H, Dier H, Dorokhov V, Fast H, Kondo Y, Kyrö E, Litynska Z, Mikkelsen IS, Molyneux MJ, Moran E, Murphy G, Nagai T, Nakane H, Parrondo C, Ravegnani F, Skrivankova P, Viatte P, Yushkov V, von der Gathen P (2002) Chemical depletion of Arctic ozone in winter 1999/2000. J Geophys Res 107(D20):8276

    Article  Google Scholar 

  • Rex M, Salawitch RJ, von der Gathen P, Harris NRP, Chipperfield MP, Naujokat B (2004) Arctic ozone loss and climate change. Geophys Res Lett 31:L04116

    Article  Google Scholar 

  • Richardson K, Steffen W, Schellnhuber H-J, Alcamo J, Barker T, Kammen DM, Leemans R, Liverman D, Munasinghe M, Osman-Elasha B, Stern N, Waever O (2009). Synthesis report: climate change—global risks, challenges and decisions. Copenhagen, Denmark. http://climatecongress.ku.dk/pdf/synthesisreport

  • Ridley J, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J Climate 18:3409–3427

    Article  Google Scholar 

  • Ridley J, Gregory JM, Huybrechts P, Lowe JA (2010) Thresholds for irreversible decline of the Greenland ice sheet. Clim Dyn. 35(6):1049–1057. doi:10.1007/s00382-009-0646-0

    Article  Google Scholar 

  • Rignot E (2001) Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica. J Glaciol 47:213–222

    Article  Google Scholar 

  • Rignot E, Vaughan DG, Schmeltz M, Dupont T, Macayeal D (2002) Acceleration of Pine Island and Thwaites Glaciers, West Antarctica. Ann Glaciol 34:189–194

    Article  Google Scholar 

  • Rignot E, Bamber JL, Van den Broeke MR, Li Y, Davis C, Van de Berg WJ, Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1:106–110

    Article  Google Scholar 

  • Rignot EJ (1998) Fast recession of a West Antarctic Glacier. Science 281:549–551

    Article  Google Scholar 

  • Rosenlof KH, Oltmans SJ, Kley D, Russell JM, Chiou EW, Chu WP, Johnson DG, Kelly KK, Michelsen HA, Nedoluha GE, Remsberg EE, Toon GC, McCormick MP (2001) Stratospheric water vapor increases over the past half-century. Geophys Res Lett 28:1195–1198

    Article  Google Scholar 

  • Rothrock DA, Yu Y, Maykut G (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26:3469–3472

    Article  Google Scholar 

  • Scaife AA, Folland CK, Alexander LV, Moberg A, Knight JR (2008) European climate extremes and the North Atlantic oscillation. J Climate 21:72–83

    Article  Google Scholar 

  • Schaefli B, Hingray B, Musy A (2007) Climate change and hydropower production in the Swiss Alps: quantification of potential impacts and related modelling uncertainties. Hydrol Earth Syst Sci 11(3):1191–1205

    Article  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59

    Article  Google Scholar 

  • Schellnhuber HJ (2009) Tipping elements in the Earth System. Proc Natl Acad Sci 106(49):20561–20563

    Article  Google Scholar 

  • Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) (2006) Avoiding dangerous climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Scherer RP, Aldahan A, Tulaczyk S, Possnert G, Engelhardt H, Kamb B (1998) Pleistocene collapse of the West Antarctic Ice Sheet. Science 281:82–85

    Article  Google Scholar 

  • Schmittner A (2005) Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature 434:628–633

    Article  Google Scholar 

  • Schnadt C, Dameris M, Ponater M, Hein R, Grewe V, Steil B (2002) Interaction of atmospheric chemistry and climate and its impact on stratospheric ozone. Clim Dyn 18:501–517

    Google Scholar 

  • Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J Geophys Res 112:F03S28

    Article  Google Scholar 

  • Shindell DT (2001) Climate and ozone response to increased stratospheric water vapor. Geophys Res Lett 28:1551–1554

    Article  Google Scholar 

  • Sime LC, Wolff EW, Oliver KIC, Tindall JC (2009) Evidence for warmer interglacials in East Antarctic ice cores. Nature 462:342–345

    Article  Google Scholar 

  • Smedsrud LH, Sorteberg A, Kloster K (2008) Recent and future changes of the Arctic sea-ice cover. Geophys Res Lett 35:L20503

    Article  Google Scholar 

  • Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean–atmosphere models. J Climate 19:3354–3360

    Article  Google Scholar 

  • Solomina O, Haeberli W, Kull C, Wiles G (2008) Historical and holocene glacier climate variations: general concepts and overview. Glob Planet Change 60:1–9

    Article  Google Scholar 

  • Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group i to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner GK (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223

    Article  Google Scholar 

  • SPARC (2010) Report on the evaluation of chemistry–climate models. Tech rept 4, SPARC CCMVal

  • Stammer D (2008) Response of the global ocean to Greenland and Antarctic ice melting. J Geophys Res 113:C06022

    Article  Google Scholar 

  • Stendel M, Christensen JH (2002) Impact of global warming on permafrost conditions in a coupled GCM. Geophys Res Lett 29(13):1632

    Article  Google Scholar 

  • Stick C, Krüger K, Schade NH, Sandmann H, Macke A (2006) Episode of unusual high solar ultraviolet radiation over central Europe due to dynamical reduced total ozone in May 2005. Atmos Chem Phys 6:1771–1776

    Article  Google Scholar 

  • Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov AP, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Climate 19:1365–1387

    Article  Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501

    Article  Google Scholar 

  • Tegtmeier S, Rex M, Wohltmann I, Krüger K (2008) Relative importance of dynamical and chemical contributions to Arctic wintertime ozone. Geophys Res Lett 35:L17801

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM, Kennedy JJ, Jones PD (2010) An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature 467:444–447

    Article  Google Scholar 

  • Tietsche S, Notz D, Jungclaus JH, Marotzke J (2011) Recovery mechanisms of Arctic summer sea ice. Geophys Res Lett. 38:L02707. doi:10.1029/2010GL045698

    Article  Google Scholar 

  • Toniazzo T, Gregory JM, Huybrechts P (2004) Climatic impact of a Greenland deglaciation and its possible irreversibility. J Climate 17:21–33

    Article  Google Scholar 

  • van Oldenborgh GJ, Drijfhout SS, van Ulden A, Haarsma R, Sterl A, Severijns S, Hazeleger W, Dijkstra H (2009) Western Europe is warming much faster than expected. Clim Past 5:1–12

    Article  Google Scholar 

  • Vaughan DG, Arthern R (2007) Why is it hard to predict the future of ice sheets? Science 315:1503–1504

    Article  Google Scholar 

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503

    Article  Google Scholar 

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267

    Article  Google Scholar 

  • Vellinga M, Wood RA (2007) Impacts of thermohaline circulation shutdown in the twenty-first century. Clim Change 91(1–2):43–63

    Google Scholar 

  • Vincent C (2002) Influence of climate change over the 20th century on four French glacier mass balances. J Geophys Res 107(4375):D19

    Google Scholar 

  • Wadhams P, Davis NR (2000) Further evidence of ice thinning in the Arctic Ocean. Geophys Res Lett 27(24):3973–3976

    Article  Google Scholar 

  • Wadhams P, Holfort J, Hansen E, Wilkinson JP (2002) A deep convective chimney in the winter Greenland Sea. Geophys Res Lett 29(10):1434

    Article  Google Scholar 

  • Wadhams P, Budeus G, Wilkinson JP, Loyning T, Pavlov V (2004) The multi-year development of long-lived convective chimneys in the Greenland Sea. Geophys Res Lett 31:L06306

    Article  Google Scholar 

  • Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36:L07502

    Article  Google Scholar 

  • Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–1093

    Article  Google Scholar 

  • Weatherhead B, Tanskanen A, Stevermer A (2004) Ozone and ultraviolet radiation. Cambridge University Press, Cambridge. http://www.acia.uaf.edu/

  • Weber SL, Drijfhout SS (2007) Stability of the Atlantic meridional overturning circulation in the Last Glacial maximum climate. Geophys Res Lett 34:L22706

    Article  Google Scholar 

  • Weber SL, Drijfhout SS, Abe-Ouchi A, Crucifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner B, Peltier WR (2007) The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Clim Past 3(1):51–64

    Article  Google Scholar 

  • Weertman J (1974) Stability of the junction of an ice sheet and an ice shelf. J Glaciol 13:3–11

    Google Scholar 

  • Weijer W, de Ruijter WPM, Dijkstra HA, Van Leeuwen PJ (1999) Impact of interbasin exchange on the Atlantic overturning circulation. J Phys Oceanogr 29:2266–2284

    Article  Google Scholar 

  • Wilkinson JP, Wadhams P (2003) A salt flux model for salinity change through 1138 ice production in the Greenland Sea, and its relationship to winter convection. J Geophys Res 108(C5):3147

    Article  Google Scholar 

  • Winguth A, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaíno M (2005) Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic Earth system model. Geophys Res Lett 32:L23714

    Article  Google Scholar 

  • Winton M (2006a) Amplified Arctic climate change: what does surface albedo feedback have to do with it? Geophys Res Lett 33:L03701

    Article  Google Scholar 

  • Winton M (2006b) Does the Arctic sea ice have a tipping point? Geophys Res Lett 33:L23504

    Article  Google Scholar 

  • WMO (2007) Scientific assessment of ozone depletion. Tech rept 50, World Meteorological Organization

  • WMO (2011) Scientific assessment of ozone depletion. Global Ozone Research and Monitoring Project–Report 52. World Meteorological Organization, Geneva, Switzerland

  • Yin J, Stouffer RJ (2007) Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere–ocean general circulation models. J Climate 20:4293–4315

    Article  Google Scholar 

  • Yin J, Schlesinger ME, Stouffer RJ (2009) Model projections of rapid sea-level rise on the northeast coast of the United States. Nat Geosci 2:262–266

    Article  Google Scholar 

  • Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33(13):L13504

    Article  Google Scholar 

  • Zemp M, Roer I, Kääb A, Hoelzle M, Paul F, Haeberli W (eds) (2008) Global glacier changes: facts and figures. World Glacier Monitoring Service, UNEP, Zurich, Switzerland

  • Zemp M, Hoelzle M, Haeberli W (2009) Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Ann Glaciol 50(50):101–111

    Article  Google Scholar 

  • Zhang J, Lindsay R, Steele M, Schweiger A (2008) What drove the dramatic retreat of arctic sea ice during summer 2007? Geophys Res Lett 35:L11505

    Article  Google Scholar 

  • Zickfeld K, Levermann A, Granger HM, Rahmstorf S, Kuhlbrodt T, Keith DW (2007) Expert judgements on the response of the Atlantic meridional overturning circulation to climate change. Clim Change 82:235–265

    Article  Google Scholar 

  • Zwierl B, Bugmann H (2005) Global change impacts on hydrological processes in Alpine catchments. Water Resour Res 41:1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Levermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levermann, A., Bamber, J.L., Drijfhout, S. et al. Potential climatic transitions with profound impact on Europe. Climatic Change 110, 845–878 (2012). https://doi.org/10.1007/s10584-011-0126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-011-0126-5

Keywords

Navigation