Skip to main content

Advertisement

Log in

A review of climate geoengineering proposals

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Climate geoengineering proposals seek to rectify the current radiative imbalance via either (1) reducing incoming solar radiation (solar radiation management) or (2) removing CO2 from the atmosphere and transferring it to long-lived reservoirs (carbon dioxide removal). For each option, we discuss its effectiveness and potential side effects, also considering lifetime of effect, development and deployment timescale, reversibility, and failure risks. We present a detailed review that builds on earlier work by including the most recent literature, and is more extensive than previous comparative frameworks. Solar radiation management propsals are most effective but short-lived, whilst carbon dioxide removal measures gain effectiveness the longer they are pursued. Solar radiation management could restore the global radiative balance, but must be maintained to avoid abrupt warming, meanwhile ocean acidification and residual regional climate changes would still occur. Carbon dioxide removal involves less risk, and offers a way to return to a pre-industrial CO2 level and climate on a millennial timescale, but is potentially limited by the CO2 storage capacity of geological reservoirs. Geoengineering could complement mitigation, but it is not an alternative to it. We expand on the possible combinations of mitigation, carbon dioxide removal and solar radiation management that might be used to avoid dangerous climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbari H, Menson S, Rosenfeld A (2009) Global cooling: increasing world-wide urban albedos to offset CO2. Climatic Change 94:275–286

    Article  Google Scholar 

  • Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230

    Article  Google Scholar 

  • Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–1166

    Article  Google Scholar 

  • Anderson LA, Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Glob Biogeochem Cycles 8(1):65–80

    Article  Google Scholar 

  • Andreae MO, Jones CD, Cox PM (2005) Strong present-day aerosol cooling implies a hot future. Nature 435:1187–1190

    Article  Google Scholar 

  • Angel R (2006) Feasibility of cooling the earth with a cloud of small spacecraft near the inner Lagrange point (L1). Proc Natl Acad Sci USA 103(46):17184–17189

    Article  Google Scholar 

  • Apak R (2007) Alternative solution to global warming arising from CO2 emissions - Partial neutralization of tropospheric H2CO3 with NH3. Environ Prog 26(4):355–359

    Article  Google Scholar 

  • Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycles 20:GB2017

    Article  Google Scholar 

  • Avgoustidi V (2007) Dimethyl sulphide production in a double-CO2 world. PhD thesis, University of East Anglia

  • Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA 104(16):6550–6555

    Article  Google Scholar 

  • Bala G, Duffy PB, Taylor KE (2008) Impact of geoengineering schemes on the global hydrological cycle. Proc Natl Acad Sci USA 105(22):7664–7669

    Article  Google Scholar 

  • Batjes NH (1995) A homogenized soil data file for global environmental research: a subset of FAO, ISRIC and NRCS profiles (Version 1.0). International Soil Reference and Information Centre, Wageningen, The Netherlands. Working Paper and Preprint 95/10b

  • Betts RA (2000) Offset of the potential carbon sink from boreal afforestation by decreases in surface albedo. Nature 408:187–190

    Article  Google Scholar 

  • Boden TA, Marland G, Andres RJ (2010) Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. doi:10.3334/CDIAC/00001

  • Bopp L, Aumont O, Belviso S, Bain S (2008) Modelling the effect of iron fertilization on dimethylsulphide emissions in the Southern Ocean. Deep-sea Res II 55:901–912

    Article  Google Scholar 

  • Bower K, Choularton T, Latham J, Sahraei J, Salter S (2006) Computational assessment of a proposed technique for global warming mitigation via albedo enhancement of marine stratocumulus clouds. Atmos Res 82(1–2):328–336

    Article  Google Scholar 

  • Boyd PW (2008a) Ranking geo-engineering schemes. Nature Geosciences 1:722–724

    Article  Google Scholar 

  • Boyd PW (2008b) Introduction and synthesis. Mar Ecol Prog Ser 364:213–218

    Article  Google Scholar 

  • Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315(5812):612–617

    Article  Google Scholar 

  • Buesseler KO, Doney SC, Karl DM, Boyd PW, Caldeira K, Chai F, Coale KH, de Baar HJW, Falkowski PG, Johnson KS, Lampitt RS, Michaels AF, Naqvi SWA, Smetacek V, Takeda S, Watson AJ (2008) Ocean iron fertilization—moving forward in a sea of uncertainty. Science 319:162

    Article  Google Scholar 

  • Caldeira K, Rau GH (2000) Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: geochemical implications. Geophys Res Lett 27:225–228

    Article  Google Scholar 

  • Caldeira K, Wood L (2008) Global and arctic climate engineering: numerical model studies. Phil Trans R Soc A 366:4039–4056

    Article  Google Scholar 

  • Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104(47):18866–18870

    Article  Google Scholar 

  • Cao L, Caldeira K (2008) Atmospheric CO2 stabilization and ocean acidification. Geophys Res Lett 35:L19609

    Article  Google Scholar 

  • Carlin A (2007) Global climate change control: is there a better strategy than reducing greenhouse gas emissions? U Penn Law Rev 155:1401–1497

    Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661

    Article  Google Scholar 

  • Chisholm SW, Falkowski PG, Cullen JJ (2001) Oceans: dis-crediting ocean fertilization. Science 294:309–310

    Article  Google Scholar 

  • Cicerone RJ (2006) Geoengineering: Encouraging research and overseeing implementation. Climatic Change 77:221–226

    Article  Google Scholar 

  • Courtland R (2008) Planktos dead in the water. Nature 451:879

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  Google Scholar 

  • Cox PM, Harris PP, Huntingford C, Betts RA, Collins M, Jones CD, Jupp TE, Marengo JA, Nobre CA (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212–215

    Article  Google Scholar 

  • Crutzen PJ (2006) Albedo enhancement by stratospheric sulphur injections: a contribution to resolve a policy dilemma? Climatic Change 77(3–4):211–219

    Article  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming by replacing fossil fuels. Atmos Chem Phys 8:389–395

    Article  Google Scholar 

  • Cullen JJ, Boyd PW (2008) Predicting and verifying the intended and unintended consequences of large-scale ocean iron fertilization. Mar Ecol Prog Ser 364:295–301

    Article  Google Scholar 

  • De Baar HJW, Gerringa LJA, Lann P, Timmermans KR (2008) Efficiency of carbon removal per added iron in ocean iron fertilisation. Mar Ecol Prog Ser 364:269–282

    Article  Google Scholar 

  • Deman KL (2008) Climate change, ocean processes and ocean iron fertilisation. Mar Ecol Prog Ser 364:219–225

    Article  Google Scholar 

  • Elliot S, Lackner KS, Ziock HJ, Dubey MK, Hanson HP, Barr S (2001) Compensation of atmospheric CO2 buildup through engineered chemical sinkage. Geophys Res Lett 28:1235–1238

    Article  Google Scholar 

  • Fleming JR (2006a) Global climate change and human agency: inadvertent influence and ‘Archimedean’ interventions. In: Fleming JR, Jankovic V, Coen DR (eds) Intimate universality: local and global themes in the history of weather and climate. Science History Publications, Sagamore Beach, pp 223–248

    Google Scholar 

  • Fleming JR (2006b) Pathological history of weather and climate modification: three cycles of promise and hype. Hist Stud Phys Sci 37:3–25

    Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin B, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353

    Article  Google Scholar 

  • Gaskill A (2004) Summary of Meeting with US DOE to discuss Geoengineering options to prevent abrupt and long-term climate change. Available via http://circa.europa.eu/Public/irc/env/action_climat/library?l=/geoengineering_optionspd/_EN_1.0_anda=d Accessed 19 Jan 2009

  • Gilabert MA, Gonzalez-Piqueras J, Garcia-Haro FJ, Melia J (2002) A generalized soil-adjusted vegetation index. Remote Sens Environ 82:303–310

    Article  Google Scholar 

  • Glibert PM, Azanza R, Burford M, Furuya K, Aba E, Al-Azri A, Al-Yamani F, Andersen P, Anderson DM, Beardall J, Berg GM, Brand L, Bronk D, Brookes J, Burkholder JM, Cembella A, Cochlan WP, Collier JL, Collos Y, Diaz R, Doblin M, Drennen T, Dyhrman S, Fukuyo Y, Furnas M, Galloway J, Granli E, Ha DV, Hallegraeff G, Harrison J, Harrison PJ, Heil CA, Heimann K, Howarth R, Jauzein C, Kana AA, Kana TM, Kim H, Kudela R, Legrand C, Mallin M, Mulholland M, Murray S, O’Neil J, Pitcher G, Qi Y, Rabalais N, Raine R, Seitzinger S, Salomon PS, Solomon C, Stoecker DK, Usup G, Wilson J, Yin K, Zhou M, Zhu M (2008) Ocean urea fertilization for carbon credits poses high ecological risks. Mar Pollut Bull 56:1049–1056

    Article  Google Scholar 

  • Gnanadesikan A, Marinov I (2008) Export is not enough: nutrient cycling and carbon sequestration. Mar Ecol Prog Ser 364:289–294

    Article  Google Scholar 

  • Gnanadesikan A, Sarimento JL, Slater RD (2003) Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production. Glob Biogeochem Cycles 17(2):1050

    Article  Google Scholar 

  • Goldemberg J, Guardabassi P (2009) Are biofuels a feasible option? Energy Policy 37:10–14

    Article  Google Scholar 

  • Govindasamy B, Caldeira K (2000) Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys Res Lett 27(14):2141–2144

    Article  Google Scholar 

  • Govindasamy B, Thompson S, Duffy PB, Caldeira K, Delire C (2002) Impact of geoengineering schemes on the terrestrial biosphere. Geophys Res Lett 29(22):2061

    Article  Google Scholar 

  • Govindasamy B, Caldeira K, Duffy PB (2003) Geoengineering Earth’s radiation balance to mitigate climate change from a quadrupling of CO2. Glob Planet Change 37(1–2):157–168

    Article  Google Scholar 

  • Gregory JM, Huybrechts P (2006) Ice sheet contributions to future sea-level change. Phil Trans R Soc A 364:1709–1731

    Article  Google Scholar 

  • Gregory JM, Huybrechts P, Raper SCB (2004) Threatened loss of the Greenland ice sheet. Nature 428:616

    Article  Google Scholar 

  • Hamwey RM (2007) Active amplification of the terrestrial albedo to mitigate climate change: an exploratory study. Mitig Adapt Strategies Glob Chang 12 (4):419–439

    Article  Google Scholar 

  • Hanna E, Cappelen J, Fettweis X, Huybrechts P, Luckman A, Ribergaard MH (2009) Hyrological response of the Greenland ice sheet: the role of oceanographic warming. Hydrol Process 23:7–30

    Article  Google Scholar 

  • Hanson J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymo M, Royer D, Zachos J (2008) Target atmospheric CO2: where should humanity aim? Open Atmos J 2:217–231

    Article  Google Scholar 

  • Harvey LDD (2008) Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions. J Geophys Res 113:C04028

    Article  Google Scholar 

  • Harvey LDD (2010) Energy and the new reality. Energy efficiency and the demand for energy services, vol 1. Earthscan, London

    Google Scholar 

  • Harvey LDD, Huang Z (1995) Evaluation of the potential impact of methane clathrate destabilization on future global warming. J Geophys Res 100:2905–2926

    Article  Google Scholar 

  • Hofmann M, Schellnhuber H-J (2009) Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. Proc Natl Acad Sci USA 106:3017–3022

    Article  Google Scholar 

  • Hopkins FE, Turner SM, Nightingale PD, Steinke M, Liss PS (2010) Ocean acidification and marine trace gas emissions. Proc Natl Acad Sci U S A 107(2):760–765

    Article  Google Scholar 

  • Houghton RA (2008) Carbon flux to the atmosphere from land-use changes: 1850–2005. In: TRENDS: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA

  • House KZ, Schrag DP, Harvey CF, Lackner KS (2006) Permanent carbon dioxide storage in deep-sea sediments. Proc Natl Acad Sci USA 103(33):12291–12295

    Article  Google Scholar 

  • Huesemann MH (2008) Ocean fertilisation and other climate change mitigation strategies: an overview. Mar Ecol Prog Ser 364:243–250

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2005) Carbon dioxide capture and storage. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007a) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007b) Climate Change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, LaRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71

    Article  Google Scholar 

  • Jin M, Dickinson R, Zhang D-L (2005) The footprint of urban areas on global climate as characterized by MODIS. J Climate 18:1151–1565

    Article  Google Scholar 

  • Jin X, Gruber N, Frenzel H, Dooley SC, McWilliams JC (2008) The impact on atmospheric CO2 of iron fertilization induced changes in the ocean’s biological pump. Biogeosciences 5:385–406

    Article  Google Scholar 

  • Johnson M, Vaughan NE, Goodwin P, Goldblatt C, Roudesli S, Lenton TM (2008) Why NH3 is not a candidate reagent for ambient CO2 fixation: a response to ‘Alternative solution to global warming arising from CO2 emissions—partial neutralization of tropospheric H2CO3 with NH3’ by R. Apak [Environmental Progress, 26, 355–359 (2007)]. Environ Prog 27:412–417

    Article  Google Scholar 

  • Karl DM, Letelier RM (2008) Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Mar Ecol Prog Ser 364:257–268

    Article  Google Scholar 

  • Keith DW (2000) Geoengineering the climate: history and prospect. Annu Rev Energy Environ 25:245–284

    Article  Google Scholar 

  • Keith DW (2001) Geoengineering. Nature 409:420

    Article  Google Scholar 

  • Keith DW, Dowlatabadi H (1992) A serious look at geoengineering. EOS Trans Am Geophys Union 73:289–296

    Article  Google Scholar 

  • Keith DW, Ha-Duong M, Stolaroff JK (2006) Climate strategy with CO2 capture from the air. Climatic Change 74:17–45

    Article  Google Scholar 

  • Kellogg WW, Schneider SH (1974) Climate stabilization: for better or for worse? Science 186:1163–1172

    Article  Google Scholar 

  • Kharecha PA, Hansen JE (2008) Implications of peak oil for atmospheric CO2 and climate. Glob Biogeochem Cycles GB22:3012

    Article  Google Scholar 

  • Kheshgi HS (1995) Sequestering Atmospheric carbon dioxide by increasing ocean alkalinity. Energy 20(9):915–922

    Article  Google Scholar 

  • Kiehl JT, Trenberth KE (1997) Earth’s annual global mean energy budget. Bull Am Meteorol Soc 78(2):197–208

    Article  Google Scholar 

  • Koppmann R (ed) (2007) Volatile organic compounds in the atmosphere. Blackwell, Oxford

    Google Scholar 

  • Lambert F, Delmonte B, Petit JR, Bigler M, Kaufmann PR, Hutterli MA, Stocker TF, Ruth U, Steffensen JP, Maggi V (2008) Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452:616–619

    Article  Google Scholar 

  • Lampitt RS, Achterberg EP, Anderson TR, Hughes JA, Iglesias-Rodriguez MD, Kelly-Gerreyn BA, Lucas M, Popova EE, Sanders R, Shepherd JG, Smythe-Wright D, Yool A (2008) Ocean fertilisation: a potential means of geoengineering? Phil Trans R Soc A 366:3919–3945

    Article  Google Scholar 

  • Latham J (1990) Control of global warming? Nature 347:339–340

    Article  Google Scholar 

  • Latham J (2002) Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos Sci Lett 3(2–4):52–58

    Article  Google Scholar 

  • Latham J, Rasch P, Chen C-C, Kettles L, Gadian A, Gettelman A, Morrison H, Bower K, Choularton T (2008) Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Phil Trans R Soc A 366:3969–3987

    Article  Google Scholar 

  • Law CS (2008) Predicting and monitoring the effects of large-scale ocean iron fertilization on marine trace gas emissions. Mar Ecol Prog Ser 364:283–288

    Article  Google Scholar 

  • Le Quere C, Rodenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316(5832):1735–1738

    Article  Google Scholar 

  • Le Quere C, Rodenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2008) Responses to comments on “Saturation of the southern ocean CO2 sink due to recent climate change”. Science 319:507c

  • Lehmann J, Gaunt J, Randon M (2006) Bio-char sequestration in terrestrial systems—a review. Mitig Adapt Strategies Glob Chang 11:403–427

    Article  Google Scholar 

  • Leinen M (2008) Building relationships between scientists and business in ocean iron fertilization. Mar Ecol Prog Ser 364:251–256

    Article  Google Scholar 

  • Lenton TM (2000) Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus B 52:1159–1188

    Article  Google Scholar 

  • Lenton TM, Britton C (2006) Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations. Glob Biogeochem Cycles 20:GB3009

    Google Scholar 

  • Lenton TM, Vaughan NE (2009) The radiative forcing potential of different climate geoengineering options. Atmos Chem Phys 9:5539–5561

    Article  Google Scholar 

  • Lenton TM, Watson AJ (2000) Redfield revisited: 1. Regulation of nitrate, phosphate and oxygen in the ocean. Glob Biogeochem Cycles 14:225–248

    Article  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the earth’s climate system. Proc Natl Acad Sci USA 105(6):1786–1793

    Article  Google Scholar 

  • Levi BG (2008) Will desperate climates call for desperate geoengineering? Phys Today 61:26–28

    Article  Google Scholar 

  • Liss PS, Hatton AD, Malin G, Nightingale PD, Turner SM (1997) Marine sulphur emissions. Phil Trans R Soc B 352 (1350):159–169

    Article  Google Scholar 

  • Lovelock JE, Rapley CG (2007) Ocean pipes could help the earth to cure itself. Nature 449(7161):403–403

    Article  Google Scholar 

  • Lunt DJ, Ridgewell A, Valdes PJ, Seale A (2008) “Sunshade world”: a fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophys Res Lett 35:L12710

    Article  Google Scholar 

  • MacCracken MC (2006) Geoengineering: worthy of cautious evaluation? Climatic Change 77(3–4):235–243

    Article  Google Scholar 

  • Mackenzie FT, Ver LM, Lerman A (2002) Century-scale nitrogen and phosphorous controls of the carbon cycle. Chem Geol 190:13–32

    Article  Google Scholar 

  • Marchetti C (1977) On geoengineering and the CO2 problem. Climatic Change 1:59–68

    Article  Google Scholar 

  • Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Palaeoceanography 5:1–13

    Article  Google Scholar 

  • Matear RJ, Elliot B (2004) Enhancement of oceanic uptake of anthropogenic CO2 by macronutrient fertilization. J Geophys Res 109:C04001

    Article  Google Scholar 

  • Matthews HD, Caldeira K (2007) Transient climate-carbon simulations of planetary geoengineering. Proc Natl Acad Sci U S A 104(24):9949–9954

    Article  Google Scholar 

  • Matthews HD, Gillett NP, Stott PA, Zickfeld K (2009) The proportionality of global warming to cumulative carbon emissions. Nature 459:829–832

    Article  Google Scholar 

  • McGrail BP, Schaef HT, Ho AM, Chien YJ, Dooley JJ, Davidson CL (2006) Potential for carbon dioxide sequestration in flood basalts. J Geophys Res-Sol Ea 111(B12):B12201

    Article  Google Scholar 

  • Mignone BK, Socolow RH, Sarmiento JL, Oppenheimer M (2008) Atmospheric stabilization and the timing of carbon mitigation. Climatic Change 88:251–265

    Article  Google Scholar 

  • Naik V, Wuebbles DJ, Delucia EH, Foley JA (2003) Influence of geoengineered climate on the terrestrial biosphere. Environ Manage 32(3):373–381

    Article  Google Scholar 

  • National Academy of Sciences (1992) Policy implications of greenhouse warming: mitigation, adaptation, and the science base. National Academy Press, Washington

    Google Scholar 

  • Nel A (2005) Atmosphere: enhanced: air pollution-related illness: effects of particles. Science 308(5723):804–806

    Article  Google Scholar 

  • Olson JS, Watts JA, Allison LJ (1985) Major world ecosystem complexes ranked by carbon in live vegetation. Carbon Dioxide Information Analysis Center, Oak Ridge, Tenn. USA, NDP-017

  • Ohlson M, Dahlberg B, Økland T, Brown KJ, Halvorsen R (2009) The charcoal carbon pool in boreal forest soils. Nature Geoscience 2:692–695

    Article  Google Scholar 

  • Oman L, Robock A, Stenchikov GL, Schmidt GA, Ruedy R (2005) Climatic response to high-latitude volcanic eruptions. J Geophys Res 110:D13103

    Article  Google Scholar 

  • Orbach MK (2008) Cultural context of ocean fertilisation. Mar Ecol Prog Ser 364:235–242

    Article  Google Scholar 

  • Orr J, Sarmiento JL (1992) Potential of marine macroalgae as a sink for CO2: constraints from a 3-D general circulation model of the global ocean. Water Air Soil Pollut 64:405–421

    Article  Google Scholar 

  • Pacala S, Socolow RH (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  Google Scholar 

  • Pearson J, Oldson J, Levin E (2006) Earth rings for planetary environment control. Acta Astronaut 58:44–57

    Article  Google Scholar 

  • Perlwitz J, Pawson S, Fogt RL, Nielsen JE, Neff WD (2008) Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys Res Lett 35:L08714

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Benders M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  Google Scholar 

  • Peyrille P, Lafore J-P, Redelsperger J-L (2007) An idealized two-dimensional framework to study the West African monsoon. Part I: validation and key controlling factors. J Atmos Sci 64:2765–2782

    Article  Google Scholar 

  • Rajagopal D, Sexton SE, Roland-Holst D, Zilberman D (2007) Challenge of biofuel: filling the tank without emptying the stomach? Environ Res Lett 2:044004

    Article  Google Scholar 

  • Rasch PJ, Crutzen PJ, Coleman DB (2008a) Exploring the geoengineering of climate using stratospheric sulphate aerosols: the role of particle size. Geophys Res Lett 35:L02809

    Article  Google Scholar 

  • Rasch PJ, Tilmes S, Turco RP, Robock A, Oman L, Chen C-C, Stenchikov GL, Garcia RR (2008b) An overview of geoengineering of climate using stratospheric sulphate aerosols. Phil Trans R Soc A 366:4007–4037

    Article  Google Scholar 

  • Rau GH, Caldeira K (1999) Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate. Energ Convers Manage 40:1803–1813

    Article  Google Scholar 

  • Rau GH, Knauss KG, Langer WH, Caldeira K (2007) Reducing energy-related CO2 emissions using accelerated weathering of limestone. Energy 32:1471–1477

    Article  Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quere C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. P Natl Acad USA 104(24):10288–10293

    Article  Google Scholar 

  • Read P (2008) Biosphere carbon stock management: addressing the threat of abrupt climate change in the next few decades: an editorial essay. Climatic Change 87:305–320

    Article  Google Scholar 

  • Read P, Parshotam A (2007) Holistic greenhouse gas management strategy (with reviewers’ comments and authors’ rejoinders). Institute of Policy Studies Working Paper 07/1, Victoria University of Wellington, Wellington, New Zealand. Available via http://ips.ac.nz/publications/publications/show/205. Accessed 19 Jan 2009

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    Google Scholar 

  • Ridgwell A, Singarayer JS, Hetherington AM, Valdes PJ (2009) Tackling regional climate change by leaf albedo bio-geoengineering. Curr Biol 19:146–150

    Article  Google Scholar 

  • Robock A, Oman L, Stenchikov GL (2008) Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J Geophys Res 113:D16101

    Article  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305(5682):367–371

    Article  Google Scholar 

  • Salter S (2006) Sea-going hardware for the implementation of the cloud albedo control method for the reduction of global warming. In: EIC climate change conference, Ottawa, Canada

  • Salter S, Sortino G, Latham J (2008) Sea-going hardware for the cloud albedo method of reversing global warming. Phil Trans R Soc A 366:3989–4006

    Article  Google Scholar 

  • Sarmiento JL, Gruber N (2006) Ocean biogeochemical cycles. Princeton University Press, Princeton

    Google Scholar 

  • Schneider SH (1996) Geoengineering: could—or should—we do it? Climatic Change 33:291–302

    Article  Google Scholar 

  • Schneider SH (2001) Earth systems engineering and management. Nature 409(6818):417–421

    Article  Google Scholar 

  • Schneider SH (2008) Geoengineering: could we or should we make it work? Phil Trans R Soc A 366:3843–3862

    Article  Google Scholar 

  • Shepherd JG, Iglesias-Rodriguez D, Yool A (2007) Geo-engineering might cause, not cure, problems. Nature 449:781

    Article  Google Scholar 

  • Slingo A (1990) Sensitivity of the earth’s radiation budget to changes in low clouds. Nature 343:49–51

    Article  Google Scholar 

  • Smetacek V, Naqvi SWA (2008) The next generation of iron fertilization experiments in the Southern Ocean. Phil Trans R Soc A 366:3947–3967

    Article  Google Scholar 

  • Stenchikov GL, Kirchner I, Robock A, Graf HF, Antuna JC, Grainger RG, Lambert A, Thomason L (1998) Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J Geophys Res-Atmos 103(D12):13837–13857

    Article  Google Scholar 

  • Stenchikov GL, Robock A, Ramaswamy V, Schwarzkopf MD, Hamilton K, Ramachandra S (2002) Arctic oscillation response to the 1991 Mount Pinatubo eruption: effects of volcanic aerosols and ozone depletion. J Geophys Res 107(D24):4803

    Article  Google Scholar 

  • Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf H-F (2006) Arctic oscillation response to volcanic eruptions in the IPCC AR4 climate models. J Geophys Res 111:D07107

    Article  Google Scholar 

  • Sterman JD (2008) Risk communication on climate: mental models and mass balance. Science 322:532-533

    Article  Google Scholar 

  • Stern DI (2005) Global sulphur emissions from 1850 to 2000. Chemosphere 58:163–175

    Article  Google Scholar 

  • Taha H (2005) Urban Surface modification as a potential ozone-air quality improvement strategy in California - Phase one: initial mesoscale modelling. Public Interest Energy Research Program Report: CEC-500–2005-128, California Energy Commission, Sacramento, CA, USA

  • Taha H (2008) Urban surface modification as a potential ozone air-quality improvement strategy in California: a mesoscale modelling study. Bound-Lay Meteorol 127:219–239

    Article  Google Scholar 

  • The Royal Society (2009) Geoengineering the climate: science, governance and uncertainty. The Royal Society, London

    Google Scholar 

  • Thingstad TF, Bellerby RGJ, Bratbak G, Børsheim KY, Egge JK, Heldal M, Larsen A, Neill C, Nejstgaard J, Norland S, Sandaa R-A, Skjoldal EF, Tanaka T, Thyrhaug R, Topper B (2008) Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature 455:387–391

    Article  Google Scholar 

  • Thompson DWJ, Solomon S (2002) Interpretation of recent southern hemisphere climate change. Science 296:895–899

    Article  Google Scholar 

  • Tickell O (2008) Kyoto2, how to manage the global greenhouse. Zed, London

    Google Scholar 

  • Tilmes S, Muller R, Salawitch R (2008) The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320:1201–1204

    Article  Google Scholar 

  • Trenberth KE, Dai A (2007) Effects of mount Pinatubo volcanic eruption on the hydrological cycle as an analogue of geoengineering. Geophys Res Lett 34(15):L15702

    Article  Google Scholar 

  • Tsvetsinskaya EA, Schaaf CB, Gao F, Strahler AH, Dickinson RE, Zeng X, Lucht W (2002) Relating MODIS-derived surface albedo to soils and rock types over Northern Africa and the Arabian Peninsula. Geophys Res Lett 29:1353

    Article  Google Scholar 

  • Tuck AF, Donaldson DJ, Hitchman MH, Richard EC, Tervahattu H, Vaida V, Wilson JC (2008) On geoengineering with sulphate aerosols in the tropical upper troposphere and lower stratosphere. Climatic Change 90:315–331

    Article  Google Scholar 

  • Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34 (7):1149–1152

    Article  Google Scholar 

  • Twomey S (1991) Aerosols, clouds and radiation. Atmos Environ, A Gen 25(11):2435–2442

    Google Scholar 

  • Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531

    Article  Google Scholar 

  • Urban MC, Philips BL, Skelly DK, Shine R (2008) A toad more traveled: the heterogeneous invasion dynamics of cane toads in Australia. Am Nat 131:E134–E148

    Article  Google Scholar 

  • Vaughan NE, Lenton TM, Shepherd J (2009) Climate change mitigation: trade-offs between delay and strength of action required. Climatic Change 96:29–43

    Article  Google Scholar 

  • Vogt M, Vallina S, von Glasow R (2008) New directions: correspondence on “enhancing the natural cycle to slow global warming”. Atmos Environ 42 (19):4803–4805

    Article  Google Scholar 

  • Watson AJ, Bakker DCE, Ridgwell AJ, Boyd PW, Law CS (2000) Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407:730–733

    Article  Google Scholar 

  • Watson AJ, Boyd PW, Turner SM, Jickells TD, Liss PS (2008) Designing the next generation of ocean iron fertilisation experiments. Mar Ecol Prog Ser 364:303–309

    Article  Google Scholar 

  • White A, Bjorkman K, Grabowski E, Letelier R, Poulos S, Watkins B, Karl D (2010) An open ocean trial of controlled upwelling using wave pump technology. J Atmos Ocean Technol 27:385–396

    Article  Google Scholar 

  • Wigley TML (1989) Possible climate change due to SO2-derived cloud condensation nuclei. Nature 339:365–367

    Article  Google Scholar 

  • Wigley TML (2006) A combined mitigation/geoengineering approach to climate stabilization. Science 314:452–454

    Article  Google Scholar 

  • Wild M, Grieser J, Schar C (2008) Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys Res Lett 35:L17706

    Article  Google Scholar 

  • Wingenter OW, Haase KB, Strutton P, Friederich G, Meinardi S, Blake DR, Rowland FS (2004) Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I, and dimethyl sulphide during the southern ocean iron enrichment experiments. Proc Natl Acad Sci USA 101(23):8537–8541

    Article  Google Scholar 

  • Wingenter OW, Elliot SM, Blake DR (2007) New directions: enhancing the natural sulphur cycle to slow global warming. Atmos Environ 41(34):7373–7375

    Article  Google Scholar 

  • Wingenter OW, Elliot SM, Blake DR (2008) Authors response to the above comment by M. Vogt et al on “New directions: enhancing the natural cycle to slow global warming”. Atmos Environ 42:4803–4809

    Article  Google Scholar 

  • Wolff EW, Barbante C, Becagli S, Bigler M, Boutron CF, Castellano E, de Angelis M, Federer U, Fischer H, Fundel F, Hansson M, Hutterli M, Jonsell U, Karlin T, Kaufmann P, Lambert F, Littot GC, Mulvaney R, Rothlisberger R, Ruth U, Severi M, Siggard-Andersen ML, Sime CL, Steffensen JP, Stocker TF, Traversi R, Twarloh B, Udisti R, Wagenbach D, Wegner A (2010) Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quat Sci Rev 29:285–295. doi:10.1016/j.quascirev.2009.06.013

    Article  Google Scholar 

  • Woodhouse MT, Mann GW, Carslaw KS, Boucher O (2008) New directions: the impact of oceanic iron fertilisation on cloud condensation nuclei. Atmos Environ 42:5728–5730

    Article  Google Scholar 

  • World Energy Council (2007) 2007 survey of energy resources. World Energy Council, London. Available via http://www.worldenergy.org/publications/survet_of_energy_resources_2007/default.asp Accessed 15 Oct 2009

  • Young E (2007) Can ‘fertilising’ the ocean combat climate change? New Sci 2621:42–45

    Article  Google Scholar 

  • Zeebe RE, Archer D (2005) Feasibility of ocean fertilization and its impact on future atmospheric CO2 levels. Geophys Res Lett 32:L09703

    Article  Google Scholar 

  • Zeebe RE, Zachos JC, Caldeira K, Tyrell T (2008) Carbon emissions and ocean acidification. Science 321:51–52

    Article  Google Scholar 

  • Zeman F (2007) Energy and material balance of CO2 capture from ambient air. Environ Sci Technol 41:7558–7563

    Article  Google Scholar 

  • Zeman F (2008) Experimental results for capturing CO2 from the atmosphere. AICHE J 54:1396–1399

    Article  Google Scholar 

  • Zhou S Flynn PC (2005) Geoengineering downwelling ocean currents: a cost assessment. Climatic Change 71(1–2):203–220

    Article  Google Scholar 

  • Zugspitze Declaration (2008) Zugspitze declaration on the responsibility of humanity for the functioning of the Earth system. Resolved by participants of the workshop in Earth system engineering: the art of dealing wisely with the planet Earth, November 2008. Available via http://www.tum-ias.de/newsroom/news-detail/article/80/zugspitze-de.html. Accessed on 19 Jan 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi E. Vaughan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughan, N.E., Lenton, T.M. A review of climate geoengineering proposals. Climatic Change 109, 745–790 (2011). https://doi.org/10.1007/s10584-011-0027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-011-0027-7

Keywords

Navigation