Skip to main content
Log in

Stretching in phase space and applications in general nonautonomous multi-body problems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In the circular restricted three-body problem, periodic orbits, stable and unstable manifolds, chaotic regions, and other dynamical features have all proven useful for engineering applications. These phase-space structures can be identified because the system is autonomous in a rotating frame. In more complex multi-body and high-fidelity models, classic invariant sets are not readily identifiable and new approaches are required. The approach here exploits the anisotropy of the growth or decay of perturbations to the trajectories, building on recent ideas from the theory of hyperbolic Lagrangian coherent structures. The present framework yields a mechanism to construct transfers in multi-body systems. In particular, it is applied to a restricted four-body problem and transfers are constructed requiring smaller \(\varDelta v\) values than are necessary to accomplish the corresponding shift in Jacobi constant values for the associated embedded three-body problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Anderson, R.L.: Low thrust trajectory design for resonant flybys and captures using invariant manifolds. Ph.D. Dissertation, University of Colorado, Boulder, Colorado (2005)

  • Anderson, R.L., Lo, M.W., Born, G.H.: Application of local Lyapunov exponents to maneuver design and navigation in the three-body problem. In: AAS/AIAA Astrodynamics Specialist Conference. Big Sky, Montana (2003)

  • Blazevski, D., Haller, G.: Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows. Phys. D 273–274, 46–64 (2014)

    Article  MathSciNet  Google Scholar 

  • Blazevski, D., Ocampo, C.: Periodic orbits in the concentric circular restricted four-body problem and their invariant manifolds. Phys. D 241, 1158–1167 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Davis, D.C., Howell, K.C.: Characterization of trajectories near the smaller primary in the restricted problem for applications. J. Guid. Control Dyn. 35(1), 116–128 (2012)

    Article  ADS  Google Scholar 

  • Diacu, F.: The solution of the \(n\)-body problem. Math. Intell. 18(3), 66–70 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Farazmand, M., Haller, G.: Computing Lagrangian coherent structures from their variational theory. Chaos 22, 013128-1–013128-12 (2012)

    Article  ADS  Google Scholar 

  • Froeschlé, C., Guzzo, M., Lega, E.: The fast Lyapunov indicator: detection of the Arnold web for Hamiltonian systems and symplectic mappings with 3 degrees of freedom. In: The Restless Universe, Proceedings of the 54th Scottish Universities Summer School in Physics, pp. 327–338. Blair Atholl, Scotland (2001)

  • Gawlik, E.S., Marsden, J.E., du Toit, P.C., Campagnola, S.: Lagrangian coherent structures in the planar elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 103(3), 227–249 (2009)

    Article  MATH  ADS  Google Scholar 

  • Grebow, D.: Trajectory design in the Earth–Moon system and lunar South Pole coverage. Ph.D. Dissertation, Purdue University, West Lafayette, Indiana (2010)

  • Guzman, J.: Spacecraft trajectory design in the context of a coherent restricted four-body problem. Ph.D. Dissertation, Purdue University, West Lafayette, Indiana (2001)

  • Haller, G.: A variational theory of hyperbolic Lagrangian coherent structures. Phys. D 240, 574–598 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Harden, G.: Automated patch point placement for autonomous spacecraft trajectory targeting. M.S. Thesis, Purdue University, West Lafayette, Indiana (2013)

  • Harden, G.K., Haapala, A.F., Howell, K.C., Marchand, B.G.: Automated patch point placement for spacecraft trajectory targeting. In: AAS/AIAA Space Flight Mechanics Meeting. Santa Fe, New Mexico (2014)

  • Jacobson, R.A.: The gravity field of the Uranian system and the orbits of the Uranian satellites and rings. Bull. Am. Astron. Soc. 39, 453 (2007)

    ADS  Google Scholar 

  • Kakoi, M., Howell, K., Folta, D.: Access to Mars from Earth–Moon libration point orbits: manifold and direct options. Acta Astronaut. 102, 269–286 (2014)

    Article  ADS  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Constructing a low energy transfer between Jovian moons. Contemp. Math. 292, 129–145 (2002)

    MathSciNet  Google Scholar 

  • Lara, M., Russell, R., Villac, B.: Classification of the distant stability regions at Europa. J. Guid. Control Dyn. 30(2), 409–418 (2007)

    Article  ADS  Google Scholar 

  • Laskar, J., Jacobson, R.A.: GUST86. An analytical ephemeris of the Uranian satellites. Astron. Astrophys. 188, 212 (1987)

    ADS  Google Scholar 

  • Mathur, M., Haller, G., Peacock, T., Ruppert-Felsot, J., Swinney, H.: Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett. 98, 144502-1–144502-4 (2007)

    ADS  Google Scholar 

  • Oshima, K., Yanao, T.: Applications of gravity assists in the bicircular and bielliptic restricted four-body problem. In: AAS/AIAA Space Flight Mechanics Meeting. Santa Fe, New Mexico (2014)

  • Pavlak, T.: Trajectory design and orbit maintenance strategies in multi-body dynamical regimes. Ph.D. Dissertation, Purdue University, West Lafayette, Indiana (2013)

  • Pavlak, T.A., Howell, K.C.: Evolution of the out-of-plane amplitude for quasi-periodic trajectories in the Earth–Moon system. Acta Astronaut. 81(2), 456–465 (2012)

    Article  ADS  Google Scholar 

  • Peacock, T., Dabiri, J.: Introduction to focus issue: Lagrangian coherent structures. Chaos 20, 017501-1–017501-3 (2010)

    Article  ADS  Google Scholar 

  • Pérez, D., Gómez, G., Masdemont, J.J.: Detecting invariant manifolds using hyperbolic Lagrangian coherent structures. In: IAA/AAS Conference on the Dynamics and Control of Space Systems. Porto, Portugal (2012)

  • Schroer, C.G., Ott, E.: Targeting in Hamiltonian systems that have mixed regular/chaotic phase spaces. Chaos 7(4), 512–519 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Shinbrot, T., Ott, E., Grebogi, C., Yorke, J.A.: Using chaos to direct trajectories to targets. Phys. Rev. Lett. 65, 3215–3218 (1990)

    Article  ADS  Google Scholar 

  • Short, C.R., Howell, K.C., Tricoche, X.M.: Lagrangian coherent structures in the restricted three-body problem. In: AAS/AIAA Space Flight Mechanics Meeting. New Orleans, Louisiana (2011)

  • Short, C.R., Howell, K.C.: Lagrangian coherent structures in various map representations for application to multi-body gravitational regimes. Acta Astronaut. 94(2), 592–607 (2014)

    Article  ADS  Google Scholar 

  • Smith, D.R.: An Introduction to Continuum Mechanics—After Truesdell and Noll. Kluwer, Dordrecht (1993)

    Book  MATH  Google Scholar 

  • Squire, W., Trapp, G.: Using complex variables to estimate derivatives of real functions. SIAM Rev. 40(1), 110–112 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Szebehely, V.: Theory of Orbits, the Restricted Problem of Three Bodies. Academic Press, New York (1967)

    Google Scholar 

  • Villac, B., Broschart, S.: Applications of chaoticitiy indicators to stability analysis around small bodies. In: AAS/AIAA Space Flight Mechanics Meeting. Savannah, Georgia (2009)

  • Villac, B.F.: Using FLI maps for preliminary spacecraft trajectory design in multi-body environments. Celest. Mech. Dyn. Astron. 102(1–3), 29–48 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the insight and assistance of Dr. Amanda Haapala and Ms. Natasha Bosanac with the numerical corrections of trajectories as well as Mr. Rohan Sood for proofreading the document. This work is supported by the Rune and Barbara Eliasen Aerospace Visualization Laboratory at Purdue University. The facilities of the Eliasen lab have been leveraged heavily for computation and the production of visuals for this paper. Support for this effort from the Purdue University College of Engineering is also acknowledged and appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cody R. Short.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Short, C.R., Blazevski, D., Howell, K.C. et al. Stretching in phase space and applications in general nonautonomous multi-body problems. Celest Mech Dyn Astr 122, 213–238 (2015). https://doi.org/10.1007/s10569-015-9617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9617-4

Keywords

Navigation