Skip to main content
Log in

In silico characterization and transcriptomic analysis of nif family genes from Anabaena sp. PCC7120

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

In silico approaches in conjunction with morphology, nitrogenase activity, and qRT-PCR explore the impact of selected abiotic stressor such as arsenic, salt, cadmium, copper, and butachlor on nitrogen fixing (nif family) genes of diazotrophic cyanobacterium Anabaena sp. PCC7120. A total of 19 nif genes are present within the Anabaena genome that is involved in the process of nitrogen fixation. Docking studies revealed the interaction between these nif gene-encoded proteins and the selected abiotic stressors which were further validated through decreased heterocyst frequency, fragmentation of filaments, and downregulation of nitrogenase activity under these stresses indicating towards their toxic impact on nitrogen fixation potential of filamentous cyanobacterium Anabaena sp. PCC7120. Another appealing finding of this study is even though having similar binding energy and similar interacting residues between arsenic/salt and copper/cadmium to nif-encoded proteins, arsenic and cadmium are more toxic than salt and copper for nitrogenase activity of Anabaena which is crucial for growth and yield of rice paddy and soil reclamation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams TH, McClung CR, Chelm BK. Physical organization of the Bradyrhizobium japonicum nitrogenase gene region. J Bacteriol. 1984;159:857–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal C, Sen S, Singh S, Rai S, Singh PK, Singh KV, Rai LC. Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N2-fixing Anabaena spp. J Proteome. 2014;96:271–90.

    Article  CAS  Google Scholar 

  • Atri N, Rai LC. Differential responses of three cyanobacteria to UV-B and Cd. J Microbiol Biotech. 2003;13:544–51.

    CAS  Google Scholar 

  • Benkert P, Tosatto SCE, Schomburg D. QMEAN: a comprehensive scoring function for model quality assessment. Proteins: Struct Funct Bioinf. 2008;71:261–77.

    Article  CAS  Google Scholar 

  • Berjanskii M, Zhou J, Liang Y, Lin G, Wishart DS. Resolution-byproxy: a simple measure for assessing and comparing the overall quality of NMR protein structures. J Biomol NMR. 2012;3:167–80.

    Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhargava P, Mishra Y, Srivastava AK, Narayan OP, Rai LC. Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: a homology based proteomic assessment of its survival strategy. Photosynth Res. 2008;96:61–74.

    Article  CAS  PubMed  Google Scholar 

  • Bohme H. Regulation of nitrogen fixation in heterocyst forming cyanobacteria. Trends Plant Sci. 1998;3:346–51.

    Article  Google Scholar 

  • Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;9:1511–9.

    Article  Google Scholar 

  • David WR, Vishwesh V. Ultra-fast FFT protein docking on graphics processors. Bioinformatics. 2010;26:2398–405.

    Article  Google Scholar 

  • Devine E, Holmqvist M, Stensjö K, Lindblad P. Transcriptional analysis of the hydrogenase specific proteases in Nostoc punctiforme and Nostoc PCC 7120. BMC Microbiol. 2009;11:9–53.

    Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The proteomics protocols handbook. Humana Press; 2005. p. 571–607.

  • Huang TC, Lin RF, Chu MK, Chen HM. Organization and expression of nitrogen-fixation genes in the aerobic nitrogen-fixing unicellular cyanobacterium Synechococcus sp. strain RF-1. Microbiology. 1999;145:743–53.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson M, Brigle K, Bennett L, Setterquist R, Wilson M, et al. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J Bacteriol. 1989;171:1017–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, et al. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 2001;8(5):20513–2753.

    Google Scholar 

  • Klaassen C, Watkins J. Casarett and Doull’s essentials of toxicology. McGraw-Hill; 2003. p. 512.

  • Küpper H, Šetlík I, Šetliková E, Ferimazova N, Spiller M, Küpper FC. Copper-induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda. Funct Plant Biol. 2003;30:1187–96.

    Article  Google Scholar 

  • Laskowski RA. PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res. 2001;29:221–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latysheva N, Junker VL, Palmer WJ, Codd GA, Barker D. The evolution of nitrogen fixation in cyanobacteria. Bioinformatics. 2012;28(5):603–6.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Reth A, Meletzus D, Sevilla M, Kennedy C. Characterization of a major cluster of nif, fix, and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus. J Bacteriol. 2000;182:7088–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh W, Anuj R, Haiyan Z, Hassan M, Robert FB, Brian DS, David SW. VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 2003;31:3316–9.

    Article  Google Scholar 

  • Mallick N, Singh AK, Rai LC. Impact of bimetallic combinations of Cu, Ni and Fe on growth rate, uptake of nitrate and ammonia, 14CO2 fixation, nitrate reductase and urease activity of Chlorella vulgaris. Biol Metals. 1990;2:223–8.

    Article  CAS  Google Scholar 

  • Masepohl B, Drepper T, Paschen A, Gross S, Pawlowski A, et al. Regulation of nitrogen fixation in the phototrophic purple bacterium Rhodobacter capsulatus. J Mol Microbiol Biotechnol. 2002;4:243–8.

    CAS  PubMed  Google Scholar 

  • Mazur ΒJ, Rice D, Haselkorn R. Identification of blue-green algal nitrogen fixation genes by using heterologous DNA hybridization probes. Proc Natl Acad Sci U S A. 1980;77:186–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Rai R, Rai LC. Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J Prot. 2012;75:921–37.

    Article  CAS  Google Scholar 

  • Pandey S, Shrivastava AK, Singh VK, Rai R, Singh PK, Rai S, Rai LC. A new arsenate reductase involved in arsenic detoxification in Anabaena sp. PCC7120. Funct Integr Genomics. 2013;13:43–55.

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa F, Teixeira KRS, Machado I, Steffens M, Klassen G, et al. Structural organization and regulation of the nif genes of Herbaspirillum seropedicae. Soil Biol Biochem. 1997;29:843–6.

    Article  CAS  Google Scholar 

  • Prasad MNV, Strzalka K. Impact of heavy metals on photosynthesis. In: Prasad MNV, Hagemeyer J, editors. Heavy metal stress in plants: from molecules to ecosystems. Berlin-Heidelberg: Springer Verlag; 1999. p. 117–38.

    Chapter  Google Scholar 

  • Rai LC, Raizada M. Effect of nickel and silver ions on survival, growth, carbon fixation and nitrogenase activity of Nostoc muscorum: regulation of toxicity by EDTA and calcium. J Gen Appl Microbiol. 1985;31:329–37.

    Article  CAS  Google Scholar 

  • Rai LC, Singh AK, Mallick N. Physiological and biochemical characteristics of a copper tolerant and a wild type strain of Anabaena doliolum under copper stress. J Plant Physiol. 1991;138:68–74.

    Article  CAS  Google Scholar 

  • Rai S, Agrawal C, Shrivastava AK, Singh PK, Rai LC. Comparative proteomics unveils cross species variations in Anabaena under salt stress. J Proteome. 2014;98:254–70.

    Article  CAS  Google Scholar 

  • Rice D, Mazur BJ, Haselkorn R. Isolation and physical mapping of nitrogen fixation genes from the cyanobacterium Anabaena 7120. J Biol Chem. 1982;257:13157–63.

    CAS  PubMed  Google Scholar 

  • Schmitz O, Gurke J, Bothe H. Molecular evidence for the aerobic expression of nifJ, encoding pyruvate: ferredoxin oxidoreductase, in cyanobacteria. FEMS Microbiol Lett. 2001;195(1):97–102.

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava AK, Singh S, Singh PK, Pandey S, Rai LC. A novel alkyl hydroperoxidase (AhpD) of Anabaena PCC7120 confers abiotic stress tolerance in Escherichia coli. Funct Integr Genomics. 2015;15:77–92.

    Article  CAS  PubMed  Google Scholar 

  • Sillitoe I, Cuff AL, Dessailly BH, Dawson NL, Furnham N. New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures. Nucleic Acids Res. 2013;41:D490–8.

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Shrivastava AK, Singh VK. Arsenic and cadmium are inhibitors of cyanobacterial dinitrogenase reductase (nifH1) gene. Funct integr genomics. 2014;14:571–80.

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Shrivastava AK, Singh S, Rai R, Chatterjee A, Rai LC. ADP-ribose pyrophosphatase activity bestows abiotic stress tolerance in Escherichia Coli. Funct Integr Genomics. 2016;17(1):39–52.

  • Snel B, Lehmann G, Bork P, Huynen MA. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 2000;28:3442–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart WDP, Fipzgerald GP, Burris RH. Acetylene reduction by nitrogen fixing blue-green algae. Arch Microbiol. 1968;62:336–48.

    CAS  Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev. 2002;66:11–20.

    Article  Google Scholar 

  • Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:407–10.

    Article  Google Scholar 

  • Wyn Jones RG, Pollard A. Proteins, enzymes and inorganic ions. In: Lauchli A, Pirson A, editors. Encyclopedia of plant physiology, vol. 15B . Berlin: Springer; 1983. p. 528–62.New series

    Google Scholar 

  • Yan Y, Yang J, Dou Y, Chen M, Ping S, et al. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci. 2008;105:7564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Zhou LH, Lim QE, Zou RY, Stephanopoulos G, Too HP. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC Mol Biol. 2011;12:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Shilpi Singh is thankful to Prof. L. C. Rai, FNA, and Prof. J. P. Gaur, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, for their intellectual feedbacks and for using lab facilities. Shilpi Singh is also thankful to DST-WOSA for financial support. Alok Kumar Shrivastava is thankful to SERB-DST, New Delhi for DST Young Scientist Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpi Singh.

Additional information

Shilpi Singh and Alok Kumar Shrivastava contributed equally to this work.

Electronic supplementary material

ESM 1

(DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Shrivastava, A.K. In silico characterization and transcriptomic analysis of nif family genes from Anabaena sp. PCC7120. Cell Biol Toxicol 33, 467–482 (2017). https://doi.org/10.1007/s10565-017-9388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-017-9388-7

Keywords

Navigation