Skip to main content
Log in

FAM3D inhibits glucagon secretion via MKP1-dependent suppression of ERK1/2 signaling

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Dysregulated glucagon secretion is a hallmark of type 2 diabetes (T2D). To date, few effective therapeutic agents target on deranged glucagon secretion. Family with sequence similarity 3 member D (FAM3D) is a novel gut-derived cytokine-like protein, and its secretion timing is contrary to that of glucagon. However, the roles of FAM3D in metabolic disorder and its biological functions are largely unknown. In the present study, we investigated whether FAM3D modulates glucagon production in mouse pancreatic alpha TC1 clone 6 (αTC1-6) cells. Glucagon secretion, prohormone convertase 2 (PC2) activity, and mitogen-activated protein kinase (MAPK) pathway were assessed. Exogenous FAM3D inhibited glucagon secretion, PC2 activity, as well as extracellular-regulated protein kinase 1/2 (ERK1/2) signaling and induced MAPK phosphatase 1 (MKP1) expression. Moreover, knockdown of MKP1 and inhibition of ERK1/2 abolished and potentiated the inhibitory effect of FAM3D on glucagon secretion, respectively. Taken together, FAM3D inhibits glucagon secretion via MKP1-dependent suppression of ERK1/2 signaling. These results provide rationale for developing the therapeutic potential of FAM3D for dysregulated glucagon secretion and T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahren B, Landin-Olsson M, Jansson PA, Svensson M, Holmes D, Schweizer A. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J Clin Endocrinol Metab. 2004;89(5):2078–84.

    Article  CAS  PubMed  Google Scholar 

  • Baumann G, Amburn KD, Buchanan TA. The effect of circulating growth hormone-binding protein on metabolic clearance, distribution, and degradation of human growth hormone. J Clin Endocrinol Metab. 1987;64(4):657–60.

    Article  CAS  PubMed  Google Scholar 

  • Bendre A, Buki KG, Maatta JA. Fam3c modulates osteogenic differentiation by down-regulating Runx2. Differentiation. 2017;93:50–7.

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Gao Z, Robert CE, Greene S, Xu G, Xu W, et al. Pancreatic-derived factor (FAM3B), a novel islet cytokine, induces apoptosis of insulin-secreting beta-cells. Diabetes. 2003;52(9):2296–303.

    Article  CAS  PubMed  Google Scholar 

  • Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha B, Chen T, Sarker R, Yang J, Raben D, Tse CM, et al. Lysophosphatidic acid stimulation of NHE3 exocytosis in polarized epithelial cells occurs with release from NHERF2 via ERK-PLC-PKCdelta signaling. Am J Physiol Cell Physiol. 2014;307(1):C55–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang JC, Sakata I, Kohno D, Perello M, Osborne-Lawrence S, Repa JJ, et al. Ghrelin directly stimulates glucagon secretion from pancreatic alpha-cells. Mol Endocrinol. 2011;25(9):1600–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Alessio D. The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes Obes Metab. 2011;13(Suppl 1):126–32.

    Article  PubMed  Google Scholar 

  • de Wit NJW, Ijssennagger N, Oosterink E, Keshtkar S, Hooiveld GJEJ, Mensink RP, et al. Oit1/Fam3D, a gut-secreted protein displaying nutritional status-dependent regulation. Journal of Nutritional Biochemistry. 2012;23(11):1425–33.

    Article  PubMed  Google Scholar 

  • Farhan H, Wendeler MW, Mitrovic S, Fava E, Silberberg Y, Sharan R, et al. MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening. J Cell Biol. 2010;189(6):997–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq A, Zhou MM. Structure and regulation of MAPK phosphatases. Cell Signal. 2004;16(7):769–79.

    Article  CAS  PubMed  Google Scholar 

  • Giorda CB, Nada E, Tartaglino B. Pharmacokinetics, safety, and efficacy of DPP-4 inhibitors and GLP-1 receptor agonists in patients with type 2 diabetes mellitus and renal or hepatic impairment. A systematic review of the literature. Endocrine. 2014;46(3):406–19.

    Article  CAS  PubMed  Google Scholar 

  • Godoy-Matos AF. The role of glucagon on type 2 diabetes at a glance. Diabetol Metab Syndr. 2014;6(1):91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137–49.

    Article  CAS  PubMed  Google Scholar 

  • Guizzetti L, McGirr R, Dhanvantari S. Two dipolar alpha-helices within hormone-encoding regions of proglucagon are sorting signals to the regulated secretory pathway. J Biol Chem. 2014;289(21):14968–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare KJ, Vilsboll T, Asmar M, Deacon CF, Knop FK, Holst JJ. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes. 2010;59(7):1765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helwig M, Lee SN, Hwang JR, Ozawa A, Medrano JF, Lindberg I. Dynamic modulation of prohormone convertase 2 (PC2)-mediated precursor processing by 7B2 protein: preferential effect on glucagon synthesis. J Biol Chem. 2011;286(49):42504–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holst JJ. Glucagon and glucagon-like peptides 1 and 2. Results Probl Cell Differ. 2010;50:121–35.

    CAS  PubMed  Google Scholar 

  • Huang CY, Tan TH. DUSPs, to MAP kinases and beyond. Cell Biosci. 2012;2(1):24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamison RA, Stark R, Dong J, Yonemitsu S, Zhang D, Shulman GI, et al. Hyperglucagonemia precedes a decline in insulin secretion and causes hyperglycemia in chronically glucose-infused rats. Am J Physiol Endocrinol Metab. 2011;301(6):E1174–E83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia S, Chen Z, Li J, Chi Y, Wang J, Li S, et al. FAM3A promotes vascular smooth muscle cell proliferation and migration and exacerbates neointima formation in rat artery after balloon injury. J Mol Cell Cardiol. 2014;74:173–82.

    Article  CAS  PubMed  Google Scholar 

  • Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol. 2010;661:3–38.

    Article  CAS  PubMed  Google Scholar 

  • Kieffer TJ, Habener JF. The glucagon-like peptides. Endocr Rev. 1999;20(6):876–913.

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Berglund ED, Wang M-y, Fu X, Yu X, Charron MJ, et al. Metabolic manifestations of insulin deficiency do not occur without glucagon action. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(37):14972–6.

  • Li J, Chi Y, Wang C, Wu J, Yang H, Zhang D, et al. Pancreatic-derived factor promotes lipogenesis in the mouse liver: role of the Forkhead box 1 signaling pathway. Hepatology. 2011;53(6):1906–16.

    Article  CAS  PubMed  Google Scholar 

  • Lund A, Vilsboll T, Bagger JI, Holst JJ, Knop FK. The separate and combined impact of the intestinal hormones, GIP, GLP-1, and GLP-2, on glucagon secretion in type 2 diabetes. Am J Physiol Endocrinol Metab. 2011;300(6):E1038–46.

    Article  CAS  PubMed  Google Scholar 

  • Lund A, Bagger JI, Christensen M, Knop FK, Vilsboll T. Glucagon and type 2 diabetes: the return of the alpha cell. Curr Diab Rep. 2014;14(12):555.

    Article  PubMed  Google Scholar 

  • Ma X, Zhang Y, Gromada J, Sewing S, Berggren PO, Buschard K, et al. Glucagon stimulates exocytosis in mouse and rat pancreatic alpha-cells by binding to glucagon receptors. Mol Endocrinol. 2005;19(1):198–212.

    Article  CAS  PubMed  Google Scholar 

  • Mauri P, Scarpa A, Nascimbeni AC, Benazzi L, Parmagnani E, Mafficini A, et al. Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB J. 2005;19(9):1125–7.

    CAS  PubMed  Google Scholar 

  • Neumiller JJ. Differential chemistry (structure), mechanism of action, and pharmacology of GLP-1 receptor agonists and DPP-4 inhibitors. J Am Pharm Assoc (2003). 2009;49 Suppl 1:S16–29.

  • Peng X, Xu E, Liang W, Pei X, Chen D, Zheng D, et al. Identification of FAM3D as a new endogenous chemotaxis agonist for the formyl peptide receptors. J Cell Sci. 2016;129(9):1831–42.

    Article  CAS  PubMed  Google Scholar 

  • Pores-Fernando AT, Gaur S, Grybko MJ, Zweifach A. ERK activation is only one role of PKC in TCR-independent cytotoxic T cell granule exocytosis. Biochem Biophys Res Commun. 2008;371(4):630–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouille Y, Westermark G, Martin SK, Steiner DF. Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1-6 cells. Proc Natl Acad Sci U S A. 1994;91(8):3242–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouille Y, Martin S, Steiner DF. Differential processing of proglucagon by the subtilisin-like prohormone convertases PC2 and PC3 to generate either glucagon or glucagon-like peptide. J Biol Chem. 1995;270(44):26488–96.

    Article  CAS  PubMed  Google Scholar 

  • Scamuffa N, Calvo F, Chretien M, Seidah NG, Khatib AM. Proprotein convertases: lessons from knockouts. FASEB J. 2006;20(12):1954–63.

    Article  CAS  PubMed  Google Scholar 

  • Scheen AJ. Pharmacokinetics and clinical use of incretin-based therapies in patients with chronic kidney disease and type 2 diabetes. Clin Pharmacokinet. 2015;54(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  • Seidah NG, Sadr MS, Chretien M, Mbikay M. The multifaceted proprotein convertases: their unique, redundant, complementary, and opposite functions. J Biol Chem. 2013;288(30):21473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song WJ, Mondal P, Wolfe A, Alonso LC, Stamateris R, Ong BW, et al. Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metab. 2014;19(4):667–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Chi Y, Li J, Miao Y, Li S, Su W, et al. FAM3A activates PI3K p110α/Akt signaling to ameliorate hepatic gluconeogenesis and lipogenesis. Hepatology. 2014;59(5):1779–90.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Robert CE, Burkhardt BR, Young RA, Wu J, Gao Z, et al. Mechanisms of glucose-induced secretion of pancreatic-derived factor (PANDER or FAM3B) in pancreatic beta-cells. Diabetes. 2005;54(11):3217–28.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Xu G, Patel A, McLaughlin MM, Silverman C, Knecht K, et al. Cloning, expression, and initial characterization of a novel cytokine-like gene family. Genomics. 2002;80(2):144–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Pudong Bureau of Health and Family Planning Grants (Grant No. PwRd2013-08, No. PWZxq2014-08), Shanghai Commission of Science and Technology Grant (Grant No. 124119b1800), Shanghai Pujiang Telant Project Grant (No. 14PJ1407800), as well as Shanghai Bureau of Health and Family Planning Grant (Grant No. 20124443). These supports are gratefully acknowledged. The authors also express thanks to Dr. Yi Zhang and Dr. Weihai Ying for spending their precious time on proofreading and English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Yu or Peng Zhang.

Additional information

Bo Yu and Peng Zhang are co-corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, T., Yang, D., Zhang, X. et al. FAM3D inhibits glucagon secretion via MKP1-dependent suppression of ERK1/2 signaling. Cell Biol Toxicol 33, 457–466 (2017). https://doi.org/10.1007/s10565-017-9387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-017-9387-8

Keywords

Navigation