Skip to main content
Log in

In vitro interactions between several species of harmful algae and haemocytes of bivalve molluscs

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Harmful algal blooms (HABs) can have both lethal and sublethal impacts on shellfish. To understand the possible roles of haemocytes in bivalve immune responses to HABs and how the algae are affected by these cells (haemocytes), in vitro tests between cultured harmful algal species and haemocytes of the northern quahog (= hard clam) Mercenaria mercenaria, the soft-shell clam Mya arenaria, the eastern and Pacific oysters Crassostrea virginica and Crassostrea gigas and the Manila clam Ruditapes philippinarum were carried out. Within their respective ranges of distribution, these shellfish species can experience blooms of several HAB species, including Prorocentrum minimum, Heterosigma akashiwo, Alexandrium fundyense, Alexandrium minutum and Karenia spp.; thus, these algal species were chosen for testing. Possible differences in haemocyte variables attributable to harmful algae and also effects of haemolymph and haemocytes on the algae themselves were measured. Using microscopic and flow cytometric observations, changes were measured in haemocytes, including cell morphology, mortality, phagocytosis, adhesion and reactive oxygen species (ROS) production, as well as changes in the physiology and the characteristics of the algal cells, including mortality, size, internal complexity and chlorophyll fluorescence. These experiments suggest different effects of the several species of harmful algae upon bivalve haemocytes. Some harmful algae act as immunostimulants, whereas others are immunosuppressive. P. minimum appears to activate haemocytes, but the other harmful algal species tested seem to cause a suppression of immune functions, generally consisting of decreases in phagocytosis, production of ROS and cell adhesion and besides cause an increase in the percentage of dead haemocytes, which could be attributable to the action of chemical toxins. Microalgal cells exposed to shellfish haemolymph generally showed evidence of algal degradation, e.g. loss of chlorophyll fluorescence and modification of cell shape. Thus, in vitro tests allow a better understanding of the role of the haemocytes and the haemolymph in the defence mechanisms protecting molluscan shellfish from harmful algal cells and could also be further developed to estimate the effects of HABs on bivalve molluscs in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson RS. Interactions of Perkinsus marinus with humoral factors and hemocytes of Crassostrea virginica. J Shellfish Res. 1996;15:127–34.

    Google Scholar 

  • Anderson RS. Lack of hemocyte chemiluminescence stimulation by Perkinsus marinus in eastern oysters Crassostrea virginica with dermo disease. J Aquat Anim Health. 1999;11:179–82.

    Article  Google Scholar 

  • Anderson RS, Burreson EM, Paynter KT. Defense responses of hemocytes withdrawn from Crassostrea virginica infected with Perkinsus marinus. J Invert Pathol. 1995;66:82–9.

    Article  Google Scholar 

  • Anderson RS, Brubacher LL, Calvo LMR, Burreson EM, Unger MA. Effect of in vitro exposure to tributyltin on generation of oxygen metabolites by oyster hemocytes. Environ Res. 1997;74:84–90.

    Article  PubMed  CAS  Google Scholar 

  • Arzul G, Gentien P, Bodennec G, Toularastel F, Youenou A, Crassous MP. Comparison of toxic effects in Gymnodinium cf. nagasakiense polyunsaturated fatty acids. In: Lassus P, Arzul G, Erard E, Gentien P, Mercaillou-Le-Baut C, editors. Harmful marine algal blooms. Paris: Lavoisier; 1995. p. 395–400.

    Google Scholar 

  • Arzul G, Seguel M, Guzman L, Erard-Le Denn E. Comparison of allelopathic properties in three toxic Alexandrium species. J Exper Mar Biol Ecol. 1999;232:285–95.

    Article  Google Scholar 

  • Bachère E, Gueguen Y, Gonzalez M, de Lorgeril J, Garnier J, Romestand B. Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol Rev. 2004;198:149–68.

    Article  PubMed  Google Scholar 

  • Bado-Nilles A, Gagnaire B, Thomas-Guyon H, Le Floch S, Renault T. Effects of 16 pure hydrocarbons and two oils on haemocyte and haemolymphatic parameters in the Pacific oyster, Crassostrea gigas (Thunberg). Toxicol In Vitro. 2008;22(6):1610–7.

    Article  PubMed  CAS  Google Scholar 

  • Bricelj V, Connell L, Konoki K, MacQuarrie S, Scheuer T, Catterall W, et al. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature. 2005;434:763–6.

    Article  PubMed  CAS  Google Scholar 

  • Buggé D, Hégaret H, Wikfors GH, Allam B. Oxidative burst in hard clam (Mercenaria mercenaria) haemocytes. Fish Shellfish Immunol. 2007;23:188–96.

    Article  PubMed  Google Scholar 

  • Burkholder JM. Implications of harmful microalgae and heterotrophic dinoflagellates in management of sustainable marine fisheries. Ecol Appl. 1998;8:S37–62.

    Google Scholar 

  • Cheng TC. Hemocytes: Forms and functions. In: Kennedy VS, Newell RIE, Eble AF, editors. The Eastern oyster Crassostrea virginica. College Park: Maryland Sea Grant; 1996. p. 299–333.

    Google Scholar 

  • Choquet G, Soudant P, Lambert C, Nicolas JL, Paillard C. Reduction of adhesion properties on Ruditapes philippinarum hemocytes exposed to Vibrio tapetis. Dis Aquat Org. 2003;57:109–16.

    Article  PubMed  Google Scholar 

  • Chu FLE, Lapeyre JF. Development of disease caused by the parasite, Perkinsus marinus and defense-related hemolymph factors in three populations of oysters from the Chesapeake Bay, USA. J Shellfish Res. 1993a;12:21–7.

    Google Scholar 

  • Chu FLE, Lapeyre JF. Perkinsus marinus susceptibility and defense-related activities in eastern oysters Crassostrea virginica—temperature effects. Dis Aquat Org. 1993b;16:223–34.

    Article  Google Scholar 

  • da Silva P, Hégaret H, Lambert C, Wikfors GH, Le Goïc N, Shumway SE, et al. Immunological responses of the Manila clam (Ruditapes philippinarum) with varying parasite (Perkinsus olseni) burden, during a long term exposure to the harmful alga, Karenia selliformis and possible interactions. Toxicon. 2008;51:563–73.

    Article  PubMed  Google Scholar 

  • Erard-Le-Denn E, Morlaix M, Dao JC. Effects of Gyrodinium cf. aureolum on Pecten maximus (post larvae, juveniles and adults). In: Graneli E, Sundstrom B, Edler L, Anderson DM, editors. Toxic marine phytoplankton. Elsevier: Amsterdam; 1990. p. 132–6.

    Google Scholar 

  • Fisher WS, Oliver LM, Walker WW, Manning CS, Lytle TF. Decreased resistance of eastern oysters (Crassostrea virginica) to a protozoan pathogen (Perkinsus marinus) after sublethal exposure to tributyltin oxide. Mar Environ Res. 1999;47:185–201.

    Article  CAS  Google Scholar 

  • Fisher WS, Oliver LM, Winstead JT, Long ER. A survey of oysters Crassostrea virginica from Tampa Bay, Florida: associations of internal defense measurements with contaminant burdens. Aquat Toxicol. 2000;51:115–38.

    Article  PubMed  CAS  Google Scholar 

  • Ford SE, Bricelj MV, Lambert C, Paillard C. Deleterious effects of a non PST bioactive compound(s) from Alexandrium tamarense on bivalve hemocytes. Mar Biol. 2008;154:1432–793.

    Article  Google Scholar 

  • Fossat B, Porthe-Nibelle J, Sola P, Masoni A, Gentien P, Bodennec G. Toxicity of fatty acid 18: 5n3 from Gymnodinium cf. mikimotoi: II. Intracellular pH and KC uptake in isolated trout hepatocytes. J Appl Toxicol. 1999;19:275–8.

    Article  PubMed  CAS  Google Scholar 

  • Fournier M, Pellerin J, Clermont Y, Morin Y, Brousseau P. Effects of in vivo exposure of Mya arenaria to organic and inorganic mercury on phagocytic activity of hemocytes. Toxicol. 2001;161:201–11.

    Article  CAS  Google Scholar 

  • Gagnaire B, Renault T, Bouilly K, Lapegue S, Thomas-Guyon H. Study of atrazine effects on pacific oyster, Crassostrea gigas, haemocytes. Curr Pharm Des. 2003;9:193–9.

    Article  PubMed  CAS  Google Scholar 

  • Gagnaire B, Thomas-Guyon H, Renault T. In vitro effects of cadmium and mercury on Pacific oyster, Crassostrea gigas (Thunberg), haemocytes. Fish Shellfish Immunol. 2004;16:501–12.

    Article  PubMed  CAS  Google Scholar 

  • Gagnaire B, Thomas-Guyon H, Burgeot T, Renault T. Pollutant effects on Pacific oyster, Crassostrea gigas (Thunberg), hemocytes: screening of 23 molecules using flow cytometry. Cell Biol Toxicol. 2006;22:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Galimany E, Sunila I, Hégaret H, Ramón M, Wikfors GH. Pathology and immune response of the blue mussel (Mytilus edulis L.) after an exposure to the harmful dinoflagellate Prorocentrum minimum. Harmful Algae. 2008a;7:630–8.

    Article  Google Scholar 

  • Galimany E, Sunila I, Hégaret H, Ramón M, Wikfors GH. Experimental exposure of the blue mussel (Mytilus edulis, L.) to the toxic dinoflagellate Alexandrium fundyense: histopathology, immune responses, and recovery. Harmful Algae. 2008b;7:702–11.

    Article  CAS  Google Scholar 

  • Gentien P, Arzul G. Exotoxin production by Gyrodinium cf aureolum (Dinophyceae). J Mar Biol Assoc UK. 1990;70:571–81.

    Article  CAS  Google Scholar 

  • Gentien P, Lunven M, Lazure P, Youenou A, Crassous MP. Motility and autotoxicity in Karenia mikimotoi (Dinophyceae). Phil Trans R Soc B. 2007;362:1937–46.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Mendikute A, Etxeberria A, Olabarrieta I, Cajaraville MP. Oxygen radicals production and actin filament disruption in bivalve haemocytes treated with benzo(a)pyrene. Mar Environ Res. 2002;54:431–6.

    Article  PubMed  CAS  Google Scholar 

  • Grzebyk D, Denardou A, Berland B, Pouchus YF. Evidence of a new toxin in the red-tide dinoflagellate Prorocentrum minimum. J Plankton Res. 1997;19:1111–24.

    Article  CAS  Google Scholar 

  • Guillard RRL. Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH, editors. Culture of marine invertebrate animals. New York: Plenum; 1975. p. 26–60.

    Google Scholar 

  • Guillard RRL, Hargraves PE. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia. 1993;32:234–6.

    Article  Google Scholar 

  • Guillard RRL, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol. 1962;8:229–39.

    Article  PubMed  CAS  Google Scholar 

  • Guillou L, Nezan E, Cueff V, Denn EEL, Cambon-Bonavita MA, Gentien P, et al. Genetic diversity and molecular detection of three toxic dinoflagellate genera (Alexandrium, Dinophysis, and Karenia) from French coasts. Protist. 2002;153:223–38.

    Article  PubMed  CAS  Google Scholar 

  • Haberkorn H. Impact du dinoflagellé toxique, Alexandrium minutum, sur l’huître creuse, Crassostrea gigas: approche intégrative. Ph.D. thesis. Université de Bretagne Occidentale. 2009.

  • Haberkorn H, Lambert C, Le Goïc N, Moal J, Suquet M, Guéguen M, et al. Effects of Alexandrium minutum exposure on nutrition-related processes and reproductive output in oysters Crassostrea gigas. Harmful Algae. 2010a;9:427–39.

    Article  Google Scholar 

  • Haberkorn H, Lambert C, Le Goïc N, Guéguen M, Moal J, Palacios E, et al. Effects of Alexandrium minutum exposure on physiological and hematological variables of diploid and triploid oysters, Crassostrea gigas. Aquat Toxicol. 2010b;97:96–108.

    Article  PubMed  CAS  Google Scholar 

  • Hamoutene D, Payne JF, Rahimtula A, Lee K. Effect of water soluble fractions of diesel and an oil spill dispersant (Corexit 9527) on immune responses in mussels. Bull Environ Contam Toxicol. 2004;72:1260–7.

    Article  PubMed  CAS  Google Scholar 

  • Hannam ML, Bamber SD, Galloway TS, Moody AJ, Jones MB. Effects of the model PAH phenanthrene on immune function and oxidative stress in the haemolymph of the temperate scallop Pecten maximus. Chemosphere. 2010a;78(7):779–84.

    Article  PubMed  CAS  Google Scholar 

  • Hannam ML, Bamber SD, Galloway TS, Moody AJ, Jones MB. Functional immune response in Pecten maximus: combined effects of a pathogen-associated molecular pattern and PAH exposure. Fish Shellfish Immunol. 2010b;28(1):249–52.

    Article  PubMed  CAS  Google Scholar 

  • Hégaret H, Wikfors GH. Time-dependent changes in hemocytes of eastern oysters, Crassostrea virginica, and northern bay scallops, Argopecten irradians irradians, exposed to a cultured strain of Prorocentrum minimum. Harmful Algae. 2005a;4:187–99.

    Article  Google Scholar 

  • Hégaret H, Wikfors GH. Effects of natural and field-simulated blooms of the dinoflagellate Prorocentrum minimum upon hemocytes of eastern oysters, Crassostrea virginica, from two different populations. Harmful Algae. 2005b;4:201–9.

    Article  Google Scholar 

  • Hégaret H, Wikfors GH, Soudant P. Flow-cytometric analysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation I. Haemocyte types and morphology. J Exper Mar Biol Ecol. 2003a;293:237–48.

    Article  Google Scholar 

  • Hégaret H, Wikfors GH, Soudant P. Flow cytometric analysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation II. Haemocyte functions: aggregation, viability, phagocytosis, and respiratory burst. J Exper Mar Biol Ecol. 2003b;293:249–65.

    Article  Google Scholar 

  • Hégaret H, Wikfors GH, Soudant P, Lambert C, Shumway SE, Bérard JB, et al. Toxic dinoflagellates (Alexandrium fundyense and A. catenella) have minimal apparent effect on oyster hemocytes. Mar Biol. 2007a;152:441–7.

    Article  Google Scholar 

  • Hégaret H, da Silva P, Wikfors GH, Lambert C, De Bettignies T, Shumway SE, et al. Hemocyte responses of Manila clams, Ruditapes philippinarum, with varying parasite, Perkinsus olseni, severity to toxic-algal exposures. Aquat Toxicol. 2007b;84:469–79.

    Article  PubMed  Google Scholar 

  • Hégaret H, Wikfors GH, Shumway SE. Diverse feeding responses of five species of bivalve mollusc when exposed to three species of harmful algae. J Shellfish Res. 2007c;24:549–59.

    Article  Google Scholar 

  • Hégaret H, Wikfors GH, Shumway SE. In vitro interactions between several species of harmful algae and hemocytes of bivalve molluscs. In: Moestrup O, editor. Proceedings of the 12th International Conference on Harmful Algae, Copenhagen, Denmark. 2008a. p. 356–359.

  • Hégaret H, Shumway SE, Wikfors GH, Pate S, Burkholder JM. Potential transport of harmful algae through relocation of bivalve molluscs. Mar Ecol Prog Ser. 2008b;361:169–79.

    Article  Google Scholar 

  • Hégaret H, da Silva P, Sunila I, Shumway SE, Dixon MS, Alix JH, et al. Perkinsosis in the Manila clam Ruditapes philippinarum affects responses to the harmful-alga, Prorocentrum minimum. J Exper Mar Biol Ecol. 2009;371:112–20.

    Article  Google Scholar 

  • Hégaret H, Smolowitz RM, Sunila I, Shumway SE, Alix JH, Dixon MS, et al. Combined effects of a parasite, QPX, and the harmful-alga, Prorocentrum minimum on northern quahogs, Mercenaria mercenaria. Mar Environ Res. 2010;69:337–44.

    Article  PubMed  Google Scholar 

  • Hine PM. The inter-relationships of bivalve haemocytes. Fish Shellfish Immunol. 1999;9:367–85.

    Article  Google Scholar 

  • Hoagland P, Anderson DM, Kaoru Y, White AW. The economic effects of harmful algal blooms in states: estimates, assessment issues, and information. Estuaries. 2002;25:819–37.

    Article  Google Scholar 

  • Janeway CA. The role of microbial pattern recognition in self: nonself discrimination in innate and adaptive immunity. In: Hoffmann JA, Janeway CA, Natori S, editors. Phylogenetic perspectives in immunity: the insect host defence. Austin: Landes; 1994. p. 115–22.

    Google Scholar 

  • Jenkinson I, Arzul G. Mitigation by cysteine compounds of rheotoxicity, cytotoxicity and fish mortality caused by the dinoflagellates, Gymnodinium mikimotoi and G. maguelonnense. In: Hallegraeff G, editor. Harmful algal blooms. Paris: Intergovernmental Oceanographic Commission of UNESCO; 2000. p. 461–4.

    Google Scholar 

  • Landsberg JH. The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci. 2002;10:113–390.

    Article  Google Scholar 

  • Lapeyre JF, Chu FLE, Meyers JM. Hemocytic and humoral activities of eastern and Pacific oysters following challenge by the protozoan Perkinsus marinus. Fish Shellfish Immunol. 1995;5:179–90.

    Article  Google Scholar 

  • Leibovitz L, Schott EF, Karney RC. Diseases of wild, captive and cultured scallops. J World Maricult Soc. 1984;15:269–83.

    Google Scholar 

  • Loker ES, Adema CM, Zhang SM, Kepler TB. Invertebrate immune systems—not homogeneous, not simple, not well understood. Immunol Rev. 2004;198(1):10–24.

    Article  PubMed  Google Scholar 

  • Luckenbach MW, Sellner KG, Shumway SE, Greene K. Effects of two bloom forming dinoflagellates, Prorocentrum minimum and Gyrodinium uncatenum, on the growth and survival of the eastern oyster, Crassostrea virginica (Gmelin 1791). J Shellfish Res. 1993;12:411–5.

    Google Scholar 

  • Lush GJ, Hallegraeff GM, Munday BL. High toxicity of the red tide dinoflagellate Alexandrium minutum to the brine shrimp Artemia salina. In: Yasumoto T, Oshima Y, Fukuyo Y, editors. Harmful and toxic algal blooms. Paris: UNESCO; 1996. p. 389–92.

    Google Scholar 

  • Mackenzie L, Haywood A, Adamson J, Truman P, Till D. Gymnodimine contamination in shellfish in New Zealand. In: Yasumoto T, Oshima Y, Fukuyo Y, editors. Harmful and toxic algal blooms. Paris: Intergovernmental Oceanographic Commission of UNESCO; 1996. p. 97–100.

    Google Scholar 

  • Marshall JA, de Salas M, Oda T, Hallegraeff G. Superoxide production by marine microalgae—I. Survey of 37 species from 6 classes. Mar Biol. 2005a;147:533–40.

    Article  CAS  Google Scholar 

  • Marshall JA, Ross T, Pyecroft S, Hallegraeff G. Superoxide production by marine microalgae—II. Towards understanding ecological consequences and possible functions. Mar Biol. 2005b;147:541–9.

    Article  CAS  Google Scholar 

  • Matsuyama Y, Shumway SE. Impacts of harmful algal blooms on shellfisheries aquaculture. In: Burnell G, Allan G, eds. New technologies in aquaculture. Improving production efficiency, quality and environmental management. Cambridge: Woodhead. 2009; 580–609.

  • Medzhitov R, Janeway CA. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296:298–300.

    Article  PubMed  CAS  Google Scholar 

  • Morga B, Arzul I, Chollet B, Renault T. Infection with the protozoan parasite Bonamia ostreae modifies in vitro haemocyte activities of flat oyster Ostrea edulis. Fish Shellfish Immunol. 2009;26(6):836–42.

    Article  PubMed  CAS  Google Scholar 

  • Oliver LM, Fisher WS, Winstead JT, Hemmer BL, Long E. Relationships between tissue contaminants and defense-related characteristics of oysters (Crassostrea virginica) from five Florida bays. Aquat Toxicol. 2001;55:203–22.

    Article  PubMed  CAS  Google Scholar 

  • Pearce I, Handlinger JH, Hallegraeff GM. Histopathology in Pacific oyster (Crassostrea gigas) spat caused by the dinoflagellate Prorocentrum rhathymum. Harmful Algae. 2005;4:61–74.

    Article  Google Scholar 

  • Persson A, Smith BC, Wikfors GH, Quilliam M. Grazing on toxic Alexandrium fundyense resting cysts and vegetative cells by the eastern oyster (Crassostrea virginica). Harmful Algae. 2006;5:678–84.

    Article  Google Scholar 

  • Rensel JE, Whyte JNC. Finfish mariculture and harmful algal blooms. In: Hallegraeff G, Anderson DM, Cembella A, editors. Manual on harmful microalgae. Paris: UNESCO; 2004. p. 693–722.

    Google Scholar 

  • Rowley AF, Powell A. Invertebrate immune systems specific, quasi-specific, or nonspecific? J Immunol. 2007;179:7209–14.

    PubMed  CAS  Google Scholar 

  • Sauvé S, Brousseau P, Pellerin J, Morin Y, Senecal L, Goudreau P, et al. Phagocytic activity of marine and freshwater bivalves: in vitro exposure of hemocytes to metals (Ag, Cd, Hg and Zn). Aquat Toxicol. 2002;58:189–200.

    Article  PubMed  Google Scholar 

  • Seki T, Satake M, Mackenzie L, Kaspar HF. T. Y. Gymnodimine, a new marine toxin of unprecedented structure isolated from New Zealand oysters and the dinoflagellate, Gymnodinium sp. Tetrahedron Lett. 1995;36:7093–6.

    Article  Google Scholar 

  • Seki T, Satake M, Mackenzie L, Kaspar HF, Yasumoto T. Gymnodimine, a novel toxic imine isolated from the Foveaux strait oysters and Gymnodinium sp. In: Yasumoto T, Oshima Y, Fukuyo Y, editors. Harmful and toxic algal blooms. Paris: Intergovernmental Oceanographic Commission of UNESCO; 1996. p. 495–8.

    Google Scholar 

  • Shumway SE. A review of the effects of algal blooms on shellfish and aquaculture. J World Aquac Soc. 1990;21:65–104.

    Article  Google Scholar 

  • Shumway SE, Cucci TL. The effect of the toxic Protogonyaulax tamarensis on the feeding and behavior of bivalve molluscs. Aquat Toxicol. 1987;10:9–27.

    Article  Google Scholar 

  • Shumway SE, Sherman-Caswell S, Hurst JW. Paralytic shellfish poisoning in Maine: monitoring a monster. J Shellfish Res. 1988;7:643–52.

    Google Scholar 

  • Shumway SE, Burkholder JM, Springer J. Effects of the estuarine dinoflagellate Pfiesteria shumwayae (Dinophyceae) on survival and grazing activity of several shellfish species. Harmful Algae. 2006;5(4):442–58.

    Article  Google Scholar 

  • Smolowitz R, Shumway SE. Possible cytotoxic effects of the dinoflagellate, Gyrodinium aureolum, on juvenile bivalve mollusks. Aquac Intern. 1997;5(4):291–300.

    Article  Google Scholar 

  • Sola F, Masoni A, Fossat B, Porthe-Nibelle J, Gentien P, Bodennec G. Toxicity of fatty acid 18: 5n3 from Gymnodinium cf. mikimotoi: I. Morphological and biochemical aspects on Dicentrarchus labrax gills and intestine. J Appl Toxicol. 1999;19:279–84.

    Article  PubMed  CAS  Google Scholar 

  • Tang YZ, Kong LS, Holmes MJ. Dinoflagellate Alexandrium leei (Dinophyceae) from Singapore coastal waters produces a water-soluble ichthyotoxin. Mar Biol. 2007;150:541–9.

    Article  CAS  Google Scholar 

  • Townsend DW, Pettigrew NR, Thomas AC. On the nature of Alexandrium fundyense blooms in the Gulf of Maine. Deep-Sea Res Part Ii-Topical Studies in Oceanography. 2005;52:2603–30.

    Article  Google Scholar 

  • Twiner MJ, Dixon SJ, Trick CG. Extracellular organics from specific cultures of Heterosigma akashiwo (Raphidophyceae) irreversibly alter respiratory activity in mammalian cells. Harmful Algae. 2004;3:173–82.

    Article  Google Scholar 

  • Twiner MJ, Chidiac P, Dixon SJ, Trick CG. Extracellular organic compounds from the ichthyotoxic red tide alga Heterosigma akashiwo elevate cytosolic calcium and induce apoptosis in Sf9 cells. Harmful Algae. 2005;4:789–800.

    Article  CAS  Google Scholar 

  • Uchida T, Toda S, Matsuyama Y, Yamaguchi M, Kotani Y, Honjo T. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. J Exper Mar Biol Ecol. 1999;241:285–99.

    Article  Google Scholar 

  • Ukeles R. Continuous culture—a method for the production of unicellular algal foods. In: Stein JR, editor. Handbook of phycological methods: culture methods and growth measurements. Cambridge: Cambridge University Press; 1973. p. 233–55.

    Google Scholar 

  • Veldhuis MJW, Cucci TL, Sieracki ME. Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. J Phycol. 1997;33:527–41.

    Article  CAS  Google Scholar 

  • Villalba A, Reece KS, Ordas MC, Casas SM, Figueras A. Perkinsosis in molluscs: a review. Aquat Liv Res. 2004;17:411–32.

    Article  Google Scholar 

  • Wang LP, Yan T, Zhou MJ. Impacts of HAB species Heterosigma akashiwo on early development of the scallop Argopecten irradians Lamarck. Aquac. 2006;255:374–83.

    Article  Google Scholar 

  • Wikfors GH. A review and new analysis of trophic interactions between Prorocentrum minimum and clams, scallops, and oysters. Harmful Algae. 2005;4:585–92.

    Article  Google Scholar 

  • Wikfors GH, Smolowitz RM. Detrimental effects of a Prorocentrum isolate upon hard clams and bay scallops in laboratory feeding studies. In: Smayda TJ, Shimizu Y, editors. Toxic phytoplankton blooms in the sea. New York: Elsevier; 1993. p. 447–52.

    Google Scholar 

  • Wikfors GH, Smolowitz RM. Experimental and histological studies of four life-history stages of the eastern oyster, Crassostrea virginica, exposed to a cultured strain of the dinoflagellate Prorocentrum minimum. Biol Bull. 1995;188:313–28.

    Article  Google Scholar 

  • Yan T, Zhou MJ, Fu M, Wang Y, Yu F, Li RC. The toxicity study on Heterosigma akashiwo using an Artemia bioassay. In: Hall S, Etheridge S, Anderson D, Kleindinst J, Zhu M, Zou Y, editors. Harmful algae management and mitigation, APEC #204-MR-04.2. Singapore: Asia-Pacific Economic Cooperation; 2004. p. 220–5.

    Google Scholar 

Download references

Acknowledgements

We thank Nelly Le Goïc, Lise Raimbault, Madeleine Gonçalvez, Jennifer Alix and Mark Dixon for their help during the experiments and the preparation of the manuscript; we also thank Ludovic Donaghy for his help preparing the manuscript. This work was supported by the Lerner Gray Fund for Marine Research from the American Museum of Natural History, the National Shellfisheries Association, Sigma Xi, Connecticut Sea Grant, and by USEPA/ECOHAB grant number 523792.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Hégaret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hégaret, H., da Silva, P.M., Wikfors, G.H. et al. In vitro interactions between several species of harmful algae and haemocytes of bivalve molluscs. Cell Biol Toxicol 27, 249–266 (2011). https://doi.org/10.1007/s10565-011-9186-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-011-9186-6

Keywords

Navigation