Skip to main content
Log in

Thapsigargin, a selective inhibitor of sarco-endoplasmic reticulum Ca2+-ATPases, modulates nitric oxide production and cell death of primary rat hepatocytes in culture

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Increased cytosolic calcium ([Ca2+] i ) and nitric oxide (NO) are suggested to be associated with apoptosis that is a main feature of many liver diseases and is characterized by biochemical and morphological features. We sought to investigate the events of increase in [Ca2+] i and endoplasmic reticulum (ER) calcium depletion by thapsigargin (TG), a selective inhibitor of sarco-ER-Ca2+-ATPases, in relation to NO production and apoptotic and necrotic markers of cell death in primary rat hepatocyte culture. Cultured hepatocytes were treated with TG (1 and 5 μmol/L) for 0–24 or 24–48 h. NO production and inducible NO synthase (iNOS) expression were determined as nitrite levels and by iNOS-specific antibody, respectively. Hepatocyte apoptosis was estimated by caspase-3 activity, cytosolic cytochrome c content and DNA fragmentation, and morphologically using Annexin-V/propidium iodide staining. Hepatocyte viability and mitochondrial activity were evaluated by ALT leakage and MTT test. Increasing basal [Ca2+] i by TG, NO production and apoptotic/necrotic parameters were altered in different ways, depending on TG concentration and incubation time. During 0–24 h, TG dose-dependently decreased iNOS-mediated spontaneous NO production and simultaneously enhanced hepatocyte apoptosis. In addition, TG 5 μmol/L produced secondary necrosis. During 24–48 h, TG dose-dependently enhanced basal NO production and rate of necrosis. TG 5 μmol/L further promoted mitochondrial damage as demonstrated by cytochrome c release. A selective iNOS inhibitor, aminoguanidine, suppressed TG-stimulated NO production and ALT leakage from hepatocytes after 24–48 h. Our data suggest that the extent of the [Ca2+] i increase and the modulation of NO production due to TG treatment contribute to hepatocyte apoptotic and/or necrotic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AG:

aminoguanidine

ALT:

alanine aminotransferase

ATP:

adenosine triphosphate

ER:

endoplasmic reticulum

[Ca2+]ER :

endoplasmic reticulum calcium

[Ca2+] i :

intracellular free calcium

cyt.c :

cytochrome c

MPT:

mitochondrial permeability transition

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

NF-κB:

nuclear factor-kappa B

NO:

nitric oxide

NOS:

nitric oxide synthase

eNOS:

endothelial NOS

iNOS:

inducible NOS

mtNOS:

mitochondrial NOS

nNOS:

neuronal NOS

p-NA:

p-nitroaniline

ROS:

reactive oxygen species

SERCAs:

sarco-endoplasmic reticulum Ca2+-ATPases

TG:

thapsigargin

References

  • Al-Abed Y, Bucala R. Efficient scavenging of fatty acid oxidation products by aminoguanidine. Chem Res Toxicol. 1997;10(8):875–9.

    Article  PubMed  CAS  Google Scholar 

  • Bras M, Queenan B, Susin SA. Programmed cell death via mitochondria: different modes of dying. Biochemistry (Mosc). 2005;70(2):231–9.

    Article  CAS  Google Scholar 

  • Bustamante J, Di Libero E, Fernandez-Cobo M, Monti N, Cadenas E, Boveris A. Kinetic analysis of thapsigargin-induced thymocyte apoptosis. Free Radic Biol Med. 2004;37(9):1490–8.

    Article  PubMed  CAS  Google Scholar 

  • Cardozo AK, Ortis F, Storling J, et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes. 2005;54(2):452–61.

    Article  PubMed  CAS  Google Scholar 

  • Chae HJ, Kim HR, Xu C, et al. BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol Cell. 2004;15(3):355–66.

    Article  PubMed  CAS  Google Scholar 

  • Chen BC, Hsieh SL, Lin WW. Involvement of protein kinases in the potentiation of lipopolysaccharide-induced inflammatory mediator formation by thapsigargin in peritoneal macrophages. J Leukoc Biol. 2001;69(2):280–8.

    PubMed  CAS  Google Scholar 

  • Chen T, Zamora R, Zuckerbraun B, Billiar TR. Role of nitric oxide in liver injury. Curr Mol Med. 2003;3(6):519–26.

    Article  PubMed  CAS  Google Scholar 

  • Chen YJ, Hsu KW, Tsai JN, Hung CH, Kuo TC, Chen YL. Involvement of protein kinase C in the inhibition of lipopolysaccharide-induced nitric oxide production by thapsigargin in RAW 264.7 macrophages. Int J Biochem Cell Biol. 2005;37(12):2574–85.

    Article  PubMed  CAS  Google Scholar 

  • Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM. Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun. 2001;282(5):1075–9.

    Article  PubMed  CAS  Google Scholar 

  • Dilworth C, Bigot-Lasserre D, Bars R. Spontaneous nitric oxide in hepatocyte monolayers and inhibition of compound-induced apoptosis. Toxicol In Vitro. 2001;15(6):623–30.

    Article  PubMed  CAS  Google Scholar 

  • Farghali H, Kamenikova L, Martinek J, Lincova D, Hynie S. Preparation of functionally active immobilized and perfused mammalian cells: an example of the hepatocyte bioreactor. Physiol Res. 1994;43(2):121–5.

    PubMed  CAS  Google Scholar 

  • Farghali H, Canova N, Gaier N, et al. Inhibition of endotoxemia-induced nitric oxide synthase expression by cyclosporin A enhances hepatocyte injury in rats: amelioration by NO donors. Int Immunopharmacol. 2002;2(1):117–27.

    Article  PubMed  CAS  Google Scholar 

  • Farghali H, Canova N, Kucera T, Martinek J, Masek K. Nitric oxide synthase inhibitors modulate lipopolysaccharide-induced hepatocyte injury: dissociation between in vivo and in vitro effects. Int Immunopharmacol. 2003;3(12):1627–38.

    Article  PubMed  CAS  Google Scholar 

  • Feng XQ, You Y, Xiao J, Zou P. Thapsigargin-induced apoptosis of K562 cells and its mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2006;14(1):25–30.

    PubMed  CAS  Google Scholar 

  • Fouad D, Siendones E, Costan G, Muntane J. Role of NF-kappaB activation and nitric oxide expression during PGE protection against d-galactosamine-induced cell death in cultured rat hepatocytes. Liver Int. 2004;24(3):227–36.

    Article  PubMed  CAS  Google Scholar 

  • Frankfurt OS, Krishan A. Identification of apoptotic cells by formamide-induced DNA denaturation in condensed chromatin. J Histochem Cytochem. 2001;49(3):369–78.

    PubMed  CAS  Google Scholar 

  • Fukuda K, Kojiro M, Chiu JF. Demonstration of extensive chromatin cleavage in transplanted Morris hepatoma 7777 tissue: apoptosis or necrosis? Am J Pathol. 1993;142(3):935–46.

    PubMed  CAS  Google Scholar 

  • Furuya Y, Lundmo P, Short AD, Gill DL, Isaacs JT. The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen-independent prostatic cancer cells induced by thapsigargin. Cancer Res. 1994;54:6167–75.

    PubMed  CAS  Google Scholar 

  • Geller DA, Nussler AK, Di Silvio M, et al. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci USA. 1993;90(2):522–6.

    Article  PubMed  CAS  Google Scholar 

  • Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci. 2005;26(4):190–5.

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Ponie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260:3440–50.

    PubMed  CAS  Google Scholar 

  • Guinzberg R, Uribe S, Diaz-Cruz A, Hernandez Cruz A, Pina E. In rat hepatocytes, different adenosine receptor subtypes use different secondary messengers to increase the rate of ureagenesis. Life Sci. 2006;79(4):382–90.

    Article  PubMed  CAS  Google Scholar 

  • Gumpricht E, Dahl R, Yerushalmi B, Devereaux MW, Sokol RJ. Nitric oxide ameliorates hydrophobic bile acid-induced apoptosis in isolated rat hepatocytes by non-mitochondrial pathways. J Biol Chem. 2002;277(28):25823–30.

    Article  PubMed  CAS  Google Scholar 

  • Haynes V, Elfering S, Traaseth N, Giulivi C. Mitochondrial nitric-oxide synthase: enzyme expression, characterization, and regulation. J Bioenerg Biomembr. 2004;36(4):341–6.

    Article  PubMed  CAS  Google Scholar 

  • He Q, Lee DI, Rong R, Yu M, et al. Endoplasmic reticulum calcium pool depletion-induced apoptosis is coupled with activation of the death receptor 5 pathway. Oncogene. 2002;21(17):2623–33.

    Article  PubMed  CAS  Google Scholar 

  • Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol. 2006;26(8):3071–84.

    Article  PubMed  CAS  Google Scholar 

  • Humez S, Legrand G, Vanden-Abeele F, et al. Role of endoplasmic reticulum calcium content in prostate cancer cell growth regulation by IGF and TNFalpha. J Cell Physiol. 2004;201(2):201–13.

    Article  PubMed  CAS  Google Scholar 

  • Ilan E, Tirosh O, Madar Z. Triacylglycerol-mediated oxidative stress inhibits nitric oxide production in rat isolated hepatocytes. J Nutr. 2005;135(9):2090–5.

    PubMed  CAS  Google Scholar 

  • Isaacs JT. New strategies for the medical treatment of prostate cancer. BJU Int. 2005;96(Suppl 2):35–40.

    Google Scholar 

  • Izumi T, Yamaguchi M. Overexpression of regucalcin suppresses cell death in cloned rat hepatoma H4-II-E cells induced by tumor necrosis factor-alpha or thapsigargin. J Cell Biochem. 2004;92(2):296–306.

    Article  PubMed  CAS  Google Scholar 

  • Janssen S, Rosen DM, Ricklis RM, et al. Pharmacokinetics, biodistribution, and antitumor efficacy of a human glandular kallikrein 2 (hK2)-activated thapsigargin prodrug. Prostate. 2006;66(4):358–68.

    Article  PubMed  CAS  Google Scholar 

  • Ji C, Kaplowitz N. ER stress: can the liver cope? J Hepatol. 2006;45(2):321–33.

    Article  PubMed  CAS  Google Scholar 

  • Jordan ML, Rominski B, Jaquins-Gerstl A, Geller D, Hoffman RA. Regulation of inducible nitric oxide production by intracellular calcium. Surgery. 1995;118(2):138–45; discussion 145–6.

    Google Scholar 

  • Jun CD, Yoon HJ, Park YC, et al. Synergistic cooperation between thapsigargin and phorbol ester for induction of nitric oxide synthesis in murine peritoneal macrophages. Free Radic Biol Med. 1996;20(6):769–76.

    Article  PubMed  CAS  Google Scholar 

  • Kaplowitz N. Mechanisms of liver cell injury. J Hepatol. 2000;32(1 Suppl):39–47.

    Google Scholar 

  • Kaplowitz N. Drug-induced liver injury. Clin Infect Dis. 2004;38(Suppl 2):S44–8.

    Google Scholar 

  • Kashiwagura T, Erecinska M, Wilson DF. pH dependence of hormonal regulation of gluconeogenesis and urea synthesis from glutamine in suspensions of hepatocytes. J Biol Chem. 1985;260(1):407–14.

    PubMed  CAS  Google Scholar 

  • Kiemer AK, Vollmar AM. Elevation of intracellular calcium levels contributes to the inhibition of nitric oxide production by atrial natriuretic peptide. Immunol Cell Biol. 2001;79(1):11–7.

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, He L, Lemasters JJ. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun. 2003;304(3):463–70.

    Article  PubMed  CAS  Google Scholar 

  • Kim PK, Zamora R, Petrosko P, Billiar TR. The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol. 2001;1(8):1421–41.

    Article  PubMed  CAS  Google Scholar 

  • Kim YM, Talanian RV, Billiar TR. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem. 1997;272(49):31138–48.

    Article  PubMed  CAS  Google Scholar 

  • Kishikawa H, Sakamoto A, Ogawa R. Nitric oxide suppresses hepatocyte apoptosis induced by free radicals. Biomed Res (Tokyo). 2001;22(2):83–9.

    CAS  Google Scholar 

  • Kmonickova E, Kutinova Canova N, Farghali H, Holy A, Zidek Z. Modulator of intracellular Ca(2+), thapsigargin, interferes with in vitro secretion of cytokines and nitric oxide. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005;149(2):321–4.

    PubMed  CAS  Google Scholar 

  • Korge P, Weiss JN. Thapsigargin directly induces the mitochondrial permeability transition. Eur J Biochem. 1999;265(1):273–80.

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappaB: its role in health and disease. J Mol Med. 2004;82(7):434–48.

    Article  PubMed  CAS  Google Scholar 

  • Lemaire C, Andreau K, Souvannavong V, Adam A. Inhibition of caspase activity induces a switch from apoptosis to necrosis. FEBS Lett. 1998;425(2):266–70.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Billiar TR. Nitric Oxide. IV. Determinants of nitric oxide protection and toxicity in liver. Am J Physiol. 1999;276(5 Pt 1):G1069–73.

  • Li J, Holbrook NJ. Elevated gadd153/chop expression and enhanced c-Jun N-terminal protein kinase activation sensitizes aged cells to ER stress. Exp Gerontol. 2004;39(5):735–44.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Lee B, Lee AS. Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem. 2006;281(11):7260–70.

    Article  PubMed  CAS  Google Scholar 

  • Lin XS, Denmeade SR, Cisek L, Isaacs JT. Mechanism and role of growth arrest in programmed (apoptotic) death of prostatic cancer cells induced by thapsigargin. Prostate. 1997;33(3):201–7.

    Article  PubMed  CAS  Google Scholar 

  • Liu HF, Xie Q, Jiang S, et al. Inhibition of mouse hepatocyte apoptosis by anti-caspase-12 small interfering RNA. Zhonghua Gan Zang Bing Za Zhi. 2005;13(12):923–6.

    PubMed  CAS  Google Scholar 

  • Liu J, Waalkes MP. Nitric oxide and chemically induced hepatotoxicity: beneficial effects of the liver-selective nitric oxide donor, V-PYRRO/NO. Toxicology. 2005;208(2):289–97.

    Article  PubMed  CAS  Google Scholar 

  • Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology. 2006;43(2 Suppl 1):S31–44.

  • McNaughton L, Puttagunta L, Martinez-Cuesta MA, et al. Distribution of nitric oxide synthase in normal and cirrhotic human liver. Proc Natl Acad Sci USA. 2002;99(26):17161–6.

    Article  PubMed  CAS  Google Scholar 

  • Meijer AJ, Lamers WH, Chamuleau RA. Nitrogen metabolism and ornithine cycle function. Physiol Rev. 1990;70(3):701–44.

    PubMed  CAS  Google Scholar 

  • Narayanan B, Islam MN, Bartelt D, Ochs RS. A direct mass-action mechanism explains capacitative calcium entry in Jurkat and skeletal L6 muscle cells. J Biol Chem. 2003;278(45):44188–96.

    Article  PubMed  CAS  Google Scholar 

  • Nissim I, Luhovyy B, Horyn O, Daikhin Y, Nissim I, Yudkoff M. The role of mitochondrially bound arginase in the regulation of urea synthesis: studies with [U-15N4]arginine, isolated mitochondria, and perfused rat liver. J Biol Chem. 2005;280(18):17715–24.

    Article  PubMed  CAS  Google Scholar 

  • Ockner RK. Apoptosis and liver diseases: recent concepts of mechanism and significance. J Gastroenterol Hepatol. 2001;16(3):248–60.

    Article  PubMed  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium–apoptosis link. Nat Rev Mol Cell Biol. 2003;4(7):552–65.

    Article  PubMed  CAS  Google Scholar 

  • Park YC, Jun CD, Kang HS, Kim HD, Kim HM, Chung HT. Role of intracellular calcium as a priming signal for the induction of nitric oxide synthesis in murine peritoneal macrophages. Immunology. 1996;87(2):296–302.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Lopez AM, Martinez-Salgado C, Eleno N, Arevalo M, Lopez-Novoa JM. Nitric oxide is involved in apoptosis induced by thapsigargin in rat mesangial cells. Cell Physiol Biochem. 1999;9(6):285–96.

    Article  PubMed  CAS  Google Scholar 

  • Ruemmele FM, Dionne S, Levy E, Seidman EG. TNFalpha-induced IEC-6 cell apoptosis requires activation of ICE caspases whereas complete inhibition of the caspase cascade leads to necrotic cell death. Biochem Biophys Res Commun. 1999;260(1):159–66.

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Nishio K, Ogawa Y, et al. Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radic Res. 2006;40(6):619–30.

    Article  PubMed  CAS  Google Scholar 

  • Shangari N, O'Brien PJ. The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem Pharmacol. 2004;68(7):1433–42.

    Article  PubMed  CAS  Google Scholar 

  • Schuchmann M, Galle PR. Apoptosis in liver disease. Eur J Gastroenterol Hepatol. 2001;13(7):785–90.

    Article  PubMed  CAS  Google Scholar 

  • Sohn J, Khaoustov VI, Xie Q, Chung CC, Krishnan B, Yoffe B. The effect of ursodeoxycholic acid on the survivin in thapsigargin-induced apoptosis. Cancer Lett. 2003;191(1):83–92.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava RK, Sollott SJ, Khan L, Hansford R, Lakatta EG, Longo DL. Bcl-2 and Bcl-X(L) block thapsigargin-induced nitric oxide generation, c-Jun NH(2)-terminal kinase activity, and apoptosis. Mol Cell Biol. 1999;19(8):5659–74.

    PubMed  CAS  Google Scholar 

  • Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA. 1990;87(7):2466–70.

    Article  PubMed  CAS  Google Scholar 

  • Treiman M, Caspersen C, Christensen SB. A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca2+-ATPases. Trends Pharmacol Sci. 1998;19(4):131–5.

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Takeyama Y, Hori Y, Takase K, Goshima M, Kuroda Y. Pancreatitis-associated ascitic fluid increases intracellular Ca(2+) concentration on hepatocytes. J Surg Res. 2000;93(1):171–6.

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Gao X, Fukumoto S, Tademoto S, Sato K, Hirai K. Post-isolation inducible nitric oxide synthase gene expression due to collagenase buffer perfusion and characterization of the gene regulation in primary cultured murine hepatocytes. J Biochem (Tokyo). 1998;124(5):892–9.

    CAS  Google Scholar 

  • Waring P, Beaver J. Cyclosporin A rescues thymocytes from apoptosis induced by very low concentrations of thapsigargin: effects on mitochondrial function. Exp Cell Res. 1996;227(2):264–76.

    Article  PubMed  CAS  Google Scholar 

  • Xie Q, Khaoustov VI, Chung CC, et al. Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology. 2002;36(3):592–601.

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Liu L, Charles IG, Moncada S. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat Cell Biol. 2004;6(11):1129–34.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Bhalla K, Wang HG. Bax plays a pivotal role in thapsigargin-induced apoptosis of human colon cancer HCT116 cells by controlling Smac/Diablo and Omi/HtrA2 release from mitochondria. Cancer Res. 2003;63(7):1483–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Kutinová Canová or H. Farghali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canová, N.K., Kmoníčková, E., Martínek, J. et al. Thapsigargin, a selective inhibitor of sarco-endoplasmic reticulum Ca2+-ATPases, modulates nitric oxide production and cell death of primary rat hepatocytes in culture. Cell Biol Toxicol 23, 337–354 (2007). https://doi.org/10.1007/s10565-007-0185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-007-0185-6

Keywords

Navigation