Skip to main content
Log in

Pd/NiO/Al Array Catalyst for 2-Ethylanthraquinone Hydrogenation: Synergistic Effect Between Pd and NiO/Al Support

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Manipulating the surface acidic/basic property and pore structure of support are two effective approaches to increase catalytic performance of Pd-based catalyst in anthraquinone (eAQ) hydrogenation. Herein, to combine two promoting approaches, array-typed NiO/Al supported Pd catalyst were synthesized. By regulating preparation method, three Ni(OH)2/Al support precursors showed different morphologies of nest-like, face-to-face packed and dandelion-like structure, respectively. After loading Pd, three Pd/NiO/Al catalysts exhibited different catalytic performance in eAQ hydrogenation, among which the nest-like catalyst possessed the highest H2O2 space time yield of 107.5 g gPd−1 h−1 with > 99% selectivity to active anthraquinone. Detailed characterizations were performed to investigate the pore structure, basic property and electronic structure caused by different morphologies of catalysts, to explain the structure-performance relationship. Specifically, on the basis of ensuring effective collision of reactant molecules, the outer opening pores (20–100 nm) could decrease diffusion barriers of eAQ/eAQH2, which improves active site accessibility for eAQ and benefits desorption of eAQH2. In addition, suitable amount of weak basic sites Ni2+–OH with high electronic density appropriately improves surface electronic density of Pd NPs, which moderately enhances H2 activation/dissociation but could not lead to over hydrogenation to give deeply hydrogenated byproducts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Martin C, Blanco-Brieva G, Fierro JLG (2006) Cheminform 45:6962

    Google Scholar 

  2. Ouyang L, Da GJ, Tian P, Chen T, Liang G, Xu J, Han Y (2014) J Catal 311:129

    Article  CAS  Google Scholar 

  3. Samanta C (2008) Appl Catal A 350:133

    Article  CAS  Google Scholar 

  4. Drelinkiewicz A, Pukkinen A, Kangas R, Laitinen R (2004) Catal Lett 94:157

    Article  CAS  Google Scholar 

  5. Petr J, Kurc L, Bělohlav Z, Červený L (2004) Chem Eng Process 43:887

    Article  CAS  Google Scholar 

  6. Santacesaria E, Serio MD, Russo A, Leone U, Velotti R (1999) Chem Eng Sci 54:2799

    Article  CAS  Google Scholar 

  7. Chen Q (2008) Chem Eng Process 47:787

    Article  CAS  Google Scholar 

  8. Drelinkiewicz A, Waksmundzka-Góra A, Makowski W, Stejskal J (2005) Catal Commun 6:347

    Article  CAS  Google Scholar 

  9. Kamachi T, Ogata T, Mori E, Iura K, Okuda N, Nagata M, Yoshizawa K (2015) J Phys Chem C 119:150415102603003

    Article  CAS  Google Scholar 

  10. Chen H, Huang D, Su X, Huang J, Jing X, Du M, Sun D, Jia L, Li Q (2015) Chem Eng J 262:356

    Article  CAS  Google Scholar 

  11. Park YH, Price GL (1992) Ind Eng Chem Res 31:469

    Article  CAS  Google Scholar 

  12. Hong R, He Y, Feng J, Li D (2017) AIChE J 63(9)

  13. Hong R, He Y, Miao C, Feng J, Li D (2017) Catal Lett 147:1802

    Article  CAS  Google Scholar 

  14. Feng J, Wang H, Evans GD, Duan X, Li D (2010) Appl Catal A 382:240

    Article  CAS  Google Scholar 

  15. Kosydar R, Drelinkiewicz A, Lalik E, Gurgul J (2011) Appl Catal A 402:121

    Article  CAS  Google Scholar 

  16. Santacesaria E, Serio MD, Velotti R, Leone U (1994) J Mol Catal 94:37

    Article  CAS  Google Scholar 

  17. Liu Y, Zhao L, Su J, Li M, Guo L (2015) ACS Appl Mater Inter 7:3532

    Article  CAS  Google Scholar 

  18. Chen H, Zhang F, Fu S, Duan X (2006) Adv Mater 18:3089

    Article  CAS  Google Scholar 

  19. Du X, Ding Y, Li C (2015) Chemcatchem 7:2370

    Article  CAS  Google Scholar 

  20. Villa A, Campisi S, Mohammed KMH, Dimitratos N, Vindigni F, Manzoli M, Jones W, Bowker M, Hutchings GJ, Prati L (2015) Catal Sci Technol 5:1126

    Article  CAS  Google Scholar 

  21. Villa A, Chan-Thaw CE, Veith GM, More KL, Ferri D, Prati L (2011) Chemcatchem 3:1612

    Article  CAS  Google Scholar 

  22. Lemaitre JL, Menon PG, Delannay F (1984) The measurement of catalyst dispersion. In: Delannay F (ed) Characterisation of heterogeneous catalyst, Marcel Dekker, New York

    Google Scholar 

  23. Gelin P, Siedle AR Yates JT Jr (1984) J Phys Chem 88:2978

    Article  CAS  Google Scholar 

  24. Smith JS, Thrower PA, Vannice MA (1981) J Catal 68:270

    Article  CAS  Google Scholar 

  25. Pan X, Ji X, Zhao X, Wei L, Liu T, Lu W (2015) Chemom Intell Lab 144:11

    Article  CAS  Google Scholar 

  26. Parlett CMA, Karen W, Lee AF (2013) Chem Soc Rev 42:3876

    Article  CAS  PubMed  Google Scholar 

  27. Qing X, Zhao Y, Xu C, Liu H, Evans DG, Yang W (2011) Biomaterials 32:6588

    Article  CAS  Google Scholar 

  28. Drelinkiewicz A, Hasik M, Kloc M (2000) Catal Lett 64:41

    Article  CAS  Google Scholar 

  29. Berglin T, Schoeoen NH (2002) Ind Eng Chem Process Des Dev 22:150

    Article  Google Scholar 

  30. Liu Y, Feng J, He Y, Sun J, Li D (2015) Catal Sci Technol 5:1231

    Article  CAS  Google Scholar 

  31. Liu Y, He Y, Zhou D, Feng J, Li D (2016) Catal Sci Technol 6:3027

    Article  CAS  Google Scholar 

  32. Amorim C, Keane MA (2008) J Colloid Interf Sci 322:196

    Article  CAS  Google Scholar 

  33. Zhang Z, Zhang X, Yu Q, Liu Z, Xu Ch, Gao J, Zhuang J, Wang X (2012) Chemistry 18:2639

    Article  CAS  PubMed  Google Scholar 

  34. Di CJ, Diez VK, Xu M, Iglesia E, Apesteguia CR (1998) J Catal 178:499

    Article  Google Scholar 

  35. Nesbitt HW, Legrand D, Bancroft GM (2000) Phys Chem Miner 27:357

    Article  CAS  Google Scholar 

  36. Grosvenor AP, Biesinger MC, Smart RSC (2006) Surf Sci 600:1771

    Article  CAS  Google Scholar 

  37. Shen B, Yan Y, Hongqing M, Liu T (2011) Chin J Catal 32:1803

    Article  CAS  Google Scholar 

  38. Boningari T, Ettireddy PR, Somogyvari A, Liu Y, Vorontsov A, Mcdonald CA, Smirniotis PG (2015) J Catal 325:145

    Article  CAS  Google Scholar 

  39. Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D, Grzegorczyk W, Pasieczna S (2004) J Catal 227:282

    Article  CAS  Google Scholar 

  40. He Y, Fan J, Feng J, Luo C, Yang P, Li D (2015) J Catal 331:118

    Article  CAS  Google Scholar 

  41. Jin Q, He Y, Miao M, Guan C, Du Y, Feng J, Li D (2015) Appl Catal A 500:3

    Article  CAS  Google Scholar 

  42. Kim SK, Kim C, Ji HL, Kim J, Lee H, Sang HM (2013) J Catal 306:146

    Article  CAS  Google Scholar 

  43. Matson F, Yates J, Hutchinson E (1964) J Phys Chem 68:2777

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2016YFB0301600), the National Natural Science Foundation and the Fundamental Research Funds for the Central Universities (Grant Nos. BHYC1701B, JD1816).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junting Feng or Dianqing Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, R., Wang, Q., Miao, C. et al. Pd/NiO/Al Array Catalyst for 2-Ethylanthraquinone Hydrogenation: Synergistic Effect Between Pd and NiO/Al Support. Catal Lett 149, 1286–1296 (2019). https://doi.org/10.1007/s10562-019-02712-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02712-y

Keywords

Navigation