Skip to main content
Log in

Efficient Oxidation of Glucose into Sodium Gluconate Catalyzed by Hydroxyapatite Supported Au Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Gold nanoparticles (NPs) with mean diameters of around 2 nm were successfully deposited onto the inorganic support hydroxyapatite to give the Au/HAP catalyst. The Au/HAP catalyst showed appreciably high catalytic activity for the aerobic oxidation of glucose to produce sodium gluconate at room temperature. Glucose conversions of 100% and sodium gluconate yield of 90.9% were achieved after 1 h at room temperature by the use of 0.5 equiv. Na2CO3. The developed catalytic system was easily-handed for the production of sodium gluconate. In addition, the Au/HAP catalyst was stable and could be reused for several times without the loss of its catalytic activity.

Graphical Abstract

Au/HAP catalyst showed high activity and stability on the aerobic oxidation of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu B, Zhang ZH (2016) ChemSusChem 9:2015–2036

    Article  CAS  Google Scholar 

  2. Gallezot P (2012) Chem Soc Rev 41:1538–1558

    Article  CAS  Google Scholar 

  3. Liu B, Zhang ZH (2015) ACS Catal 6:326–338

    Article  Google Scholar 

  4. Dutta S, Pal S (2014) Biomass Bioenerg 62:182–197

    Article  CAS  Google Scholar 

  5. Movil-Cabrera O, Rodriguez-Silva A, Arroyo-Torres C, Staser JA (2016) Biomass Bioenerg 88:89–96

    Article  CAS  Google Scholar 

  6. Agirrezabal-Telleria I, Gandarias I, Arias PL (2014) Catal Today 234:42–58

    Article  CAS  Google Scholar 

  7. Mallat T, Brönnimann C, Baiker A (1997) Appl Catal A 149:103–112

    Article  CAS  Google Scholar 

  8. Önal Y, Schimpf S, Claus P (2004) J Catal 223:122–133

    Article  Google Scholar 

  9. Hustede H, Haberstroh HJ, Schinzig E (1989) VCH Weinheim 449–456

  10. Gros P, Bergel A (2005) AICHE J 51:989–997

    Article  CAS  Google Scholar 

  11. Deng WP, Zhang QH, Ye W (2014) Catal Today 234:31–41

    Article  CAS  Google Scholar 

  12. Bellardita M, Garcia-Lopez EI, Marci G, Megna B, Pomilla F R, Palmisano L (2015) RSC Adv 5:59037–59047

    Article  CAS  Google Scholar 

  13. Rautiainen S, Lehtinen P, Vehkamäki M, Niemelä K, Kemell M, Heikkilä M, Repo T (2015) Catal Commun 74:115–118

    Article  Google Scholar 

  14. An DL, Ye AH, Deng WP, Zhang QH, Wang Y (2012) Chem Eur J 18:2938–2947

    Article  CAS  Google Scholar 

  15. Santhanaraj D, Rover MR, Resasco DE, Brown RC, Crossley S (2014) ChemSusChem 7:3132–3137

    Article  CAS  Google Scholar 

  16. Koklin AE, Klimenko TA, Kondratyuk AV, Lunin VV, Bogdan VI (2015) Kinet Catal 56:84–88

    Article  CAS  Google Scholar 

  17. Delidovich IV, Moroz BL, Taran OP, Gromov NV, Pyrjaev PA, Prosvirin IP, Bukhtiyarov VI, Parmon VN (2013) Chem Eng J 223:921–931

    Article  CAS  Google Scholar 

  18. Nikov I, Paev K (1995) Catal Today 24:41–47

    Article  CAS  Google Scholar 

  19. Abbadi A, van Bekkum H (1995) J Mol Catal A 97:111–118

    Article  CAS  Google Scholar 

  20. Haruta M (2003) Chem Rec 3:75–87

    Article  CAS  Google Scholar 

  21. Kusema BT, Tönnov T, Mäki-Arvela P, Salmi T, Willför S, Holmbom B (2013) Catal Sci Technol 3:116–122

    Article  CAS  Google Scholar 

  22. Mirescu A, Berndt H, Martin A, Prüße U (2007) Appl Catal A 317:204–209

    Article  CAS  Google Scholar 

  23. Sun H, Su FZ, Ni J, Cao Y, He HY, Fan KN (2009) Angew Chem Int Ed 48:4390–4393

    Article  CAS  Google Scholar 

  24. Choudary BM, Chidara S, Kantam ML, Venkanna GT, Bojja S (2005) J Am Chem Soc 127:9948–9949

    Article  CAS  Google Scholar 

  25. Zhang ZH, Yuan ZL, Tang DG, Ren YS, Lv KL, Liu B (2014) ChemSusChem 7:3496–3504

    Article  CAS  Google Scholar 

  26. Sudhakar M, Kumar VV, Naresh G, Kantam ML, Bhargava SK, Venugopal A (2016) Appl Catal B 180:113–120

    Article  CAS  Google Scholar 

  27. Zhang ZH, Zhen JD, Liu B, Lv KL, Deng KJ (2015) Green Chem 17:1308–1317

    Article  CAS  Google Scholar 

  28. Paul Lange J, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Angew Chem Int Ed 49:4479–4483

    Article  Google Scholar 

  29. Cao YL, Liu X, Iqbal S, Miedziak PJ, Edwards JK, Armstrong RD, Morgan DJ, Wang JW, Hutchings GJ (2016) Catal Sci Technol 6:107–117

    Article  Google Scholar 

  30. Wojcieszak R, Cuccovia IM, Silva MA, Rossi LM (2016) J Mol Catal A 422:35–42

    Article  CAS  Google Scholar 

  31. Opre Z, Ferri D, Krumeich F, Mallat T, Baiker A (2007) J Catal 251:48–58

    Article  CAS  Google Scholar 

  32. Biella S, Prati L, Rossi M (2002) J Catal 206:242–247

    Article  CAS  Google Scholar 

  33. Ma C, Xue W, Li J, Xing W, Hao Z (2013) Green Chem 15:1035–1041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21606082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianxiang Liu or Shengpei Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, Y., Su, S. et al. Efficient Oxidation of Glucose into Sodium Gluconate Catalyzed by Hydroxyapatite Supported Au Catalyst. Catal Lett 147, 383–390 (2017). https://doi.org/10.1007/s10562-016-1952-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1952-x

Keywords

Navigation