Skip to main content
Log in

Directed Dispersion of Au Based Catalysts at H2 Reduction Process for Aerobic Oxidation of Benzyl Alcohol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Controlled synthesis of bimetallic catalysts has attracted much attention in heterogeneous catalysis because their catalytic activity depends on the size of nanoparticles and hence the methods of synthesis. In this work, one convenient method was proposed, with an aim to control the size and dispersion of bimetallic nanoparticles. In this method, Cu2+ (or Ni2+) configurational ion of hydrotalcites was used as directing reagent, which directed the position and dispersion of the final bimetallic nanoparticles by employing the metal interaction between Cu and Au as the driving force. The size, structure and composition of bimetallic nanoparticles were characterized using techniques of X-ray diffraction (XRD), nitrogen physisorption, X-ray photoelectron spectra (XPS) and scanning transmission electron microscopy (STEM). The mean size of bimetallic AuCu nanoparticles was 2.5 nm, which was 1/4 (Step-impregnation) or 1/10 (Co-impregnation) of that prepared by traditional methods. Even if the loading of Au was increased to 10 wt%, the obtained AuCu nanoparticles were still well dispersed. The catalytic activity of AuCu and AuNi nanoparticles in aerobic oxidation of benzyl alcohol was far higher than those prepared by traditional methods. The mechanism of forming bimetallic nanoparticles was investigated. It was found that the dispersion of Cu2+ (or Ni2+) and the interaction between Cu0 (or Ni0) and Au0 are two key factors affecting the dispersion of AuCu (or AuNi) nanoparticles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Scheme 4
Fig. 19

Similar content being viewed by others

References

  1. Divins NJ, Angurell I, Escudero C, Pérez-Dieste V, Llorca J (2014) Science 346:620–623

    Article  CAS  Google Scholar 

  2. Bracey CL, Ellis PR, Hutchings GJ (2009) Chem Soc Rev 38:2231–2243

    Article  CAS  Google Scholar 

  3. Baldizzone C, Mezzavilla S, Carvalho HWP, Meier JC, Schuppert AK, Heggen M, Galeano C, Grunwaldt J, Schüth F, Mayrhofer KJJ (2014) Angew Chem Int Ed 53:14250–14254

    Article  CAS  Google Scholar 

  4. Paalanen P, Weckhuysen BM, Sankar M (2013) Catal Sci Technol 3:2869–2880

    Article  CAS  Google Scholar 

  5. Fang W, Chen J, Zhang Q, Deng W, Wang Y (2011) Chem Eur J 17:1247–1256

    Article  CAS  Google Scholar 

  6. Liu X, Wang A, Yang X, Zhang T, Mou C, Su D, Li J (2008) Chem Mater 21:410–418

    Article  Google Scholar 

  7. Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK (2008) Angew Chem 120:4913–4917

    Article  Google Scholar 

  8. Li L, Gao Y, Li H, Zhao Y, Pei Y, Chen Z, Zeng X (2013) J Am Chem Soc 135:19336–19346

    Article  CAS  Google Scholar 

  9. Liao F, Lo TWB, Tsang SCE (2015) ChemCatChem 7:1998–2014

    Article  CAS  Google Scholar 

  10. Bauer JC, Mullins D, Li M, Wu Z, Payzant EA, Overbury SH, Dai S (2011) Phys Chem Chem Phys 13:2571–2581

    Article  CAS  Google Scholar 

  11. Lu J, Low KB, Lei Y, Libera JA, Nicholls A, Stair PC, Elam JW (2014) Nat Commun 5:3264–3272

    Google Scholar 

  12. Zhong R, Sun K, Hong Y, Xu B (2014) ACS Catal 4:3982–3993

    Article  CAS  Google Scholar 

  13. Rebelli J, Detwiler M, Ma S, Williams CT, Monnier JR (2010) J Catal 270:224–233

    Article  CAS  Google Scholar 

  14. Barbier J, In: Ertl G, Knözinger H, Weitkamp J (Eds) (1999) Preparation of solid catalysts, Wiley-VCH Verlag GmbH

  15. Lamy-Pitara E, Ouazzani-Benhima LEl, Barbier J (1992) Appl Catal A 81:47–65

    Article  CAS  Google Scholar 

  16. Pieck CL, Marecot P, Barbier J (1996) Appl Catal A 143:283–298

    Article  CAS  Google Scholar 

  17. Barbier J, Marécot P, Del Angel G, Bosch P, Boitiaux JP, Didillon B, Dominguez JM, Schifter I, Espmosa G (1994) Appl Catal A 116:179–186

    Article  CAS  Google Scholar 

  18. Rebelli J, Rodriguez AA, Ma S, Williams CT, Monnier JR (2011) Catal Today 160:170–178

    Article  CAS  Google Scholar 

  19. Beard KD, Borrelli D, Cramer AM, Blom D, Van Zee JW, Monnier JR (2009) ACS Nano 3:2841–2853

    Article  CAS  Google Scholar 

  20. Ohashi M, Beard KD, Ma S, Blom DA, St-Pierre J, Van Zee JW, Monnier JR (2010) Electrochim Acta 55:7376–7384

    Article  CAS  Google Scholar 

  21. Beard KD, Van Zee JW, Monnier JR (2009) Appl Catal B 88:185–193

    Article  CAS  Google Scholar 

  22. Rodriguez AA, Williams CT, Monnier JR (2014) Appl Catal A 475:161–168

    Article  CAS  Google Scholar 

  23. Jia Q, Zhao D, Tang B, Zhao N, Li H, Sang Y, Bao N, Zhang X, Xu X, Liu H (2014) J Mater Chem A 2:16292–16298

    Article  CAS  Google Scholar 

  24. Guan Y, Zhao N, Tang B, Jia Q, Xu X, Liu H, Boughton RI (2013) Chem Commun 49:11524–11526

    Article  CAS  Google Scholar 

  25. Hakim SH, Sener C, Alba-Rubio AC, Gostanian TM, O’Neill BJ, Ribeiro FH, Miller JT, Dumesic JA (2015) J Catal 328: 75–90

    Article  CAS  Google Scholar 

  26. Wang H, Liu D, Xu C (2016) Catal Sci Technol 6:7137–7150

    Article  CAS  Google Scholar 

  27. Liu P, Degirmenci V, Hensen EJM (2014) J Catal 313: 80–91

    Article  CAS  Google Scholar 

  28. Debecker DP, Gaigneaux EM, Busca G (2009) Chem Eur J 15:3920–3935

    Article  CAS  Google Scholar 

  29. Xu Z, Zhang J, Adebajo MO, Zhang H, Zhou C (2011) Appl Clay Sci 53:139–150

    Article  CAS  Google Scholar 

  30. Fan G, Li F, Evans DG, Duan X (2014) Chem Soc Rev 43:7040–7066

    Article  CAS  Google Scholar 

  31. Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Science 330:74–78

    Article  CAS  Google Scholar 

  32. Liu P, Guan Y, Santen RA, Li C, Hensen EJM (2011) Chem Commun 47:11540–11542

    Article  CAS  Google Scholar 

  33. Wang J, Lang X, Zhaorigetu B, Jia M, Wang J, Guo X, Zhao J (2014) ChemCatChem 6:1737–1747

    Article  CAS  Google Scholar 

  34. Zhao J, Yu G, Xin K, Li L, Fu T, Cui Y, Liu H, Xue N, Peng L, Ding W (2014) Appl Catal A 482:294–299

    Article  CAS  Google Scholar 

  35. Du Y, Jin Q, Feng J, Zhang N, He Y, Li D (2015) Catal Sci Technol 5:3216–3225

    Article  CAS  Google Scholar 

  36. Xu C, Sun J, Zhao B, Liu Q (2010) Appl Catal B 99:111–117

    Article  CAS  Google Scholar 

  37. Liu P, Derchi M, Hensen EJM (2014) Appl Catal B 144:135–143

    Article  Google Scholar 

  38. Pojanavaraphan C, Luengnaruemitchai A, Gulari E (2013) Appl Catal A 456:135–143

    Article  CAS  Google Scholar 

  39. Luo M, Bian P, Zheng X (1998) Chin J Appl Chem 15:113–114

    CAS  Google Scholar 

  40. Liu J, Qiao B, Song Y, Huang Y, Liu J (2015) Chem Commun 51:15332–15335

    Article  CAS  Google Scholar 

  41. Kirkeminde A, Spurlin S, Draxler-Sixta L, Cooper J, Ren S (2015) Angew Chem Int Ed 54:4203–4207

    Article  CAS  Google Scholar 

  42. Wang Z, Xu C, Wang H (2014) Catal Lett 144:1919–1929

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by projects funded by the Major Research Plan of National Natural Science Foundation of China (Program No. 91545130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunli Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, N., Xu, C. et al. Directed Dispersion of Au Based Catalysts at H2 Reduction Process for Aerobic Oxidation of Benzyl Alcohol. Catal Lett 147, 547–565 (2017). https://doi.org/10.1007/s10562-016-1938-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1938-8

Keywords

Navigation