Skip to main content

Advertisement

Log in

The Impact of Sulfur on Ethanol Steam Reforming

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of sulfur on the activity and selectivity of a bimetallic Rh–Pt catalyst was studied in the steam reforming of 85 % ethanol, 15 % gasoline (E85) with a sulfur concentration of 5 ppm. Tests with packed bed and monolith catalyst configurations were performed at low space velocities (22,000 h−1) and a steam to carbon ratio of 1.8. At these conditions the catalyst could achieve full conversion of the fuel to equilibrium concentrations of the main reforming products (H2, CO, CO2, and CH4), however the introduction of sulfur-containing fuel incited immediate deactivation and a drastic increase in the amount of ethylene detected. Upon removal of sulfur from the stream, selectivity shifted from ethylene to acetaldehyde, indicating that ethylene production is most impacted by the presence of sulfur. Post-reforming characterization of the catalyst indicated large deposits of increasingly graphitic coke on the surface of the catalyst. Regeneration in air resulted in a decrease in precious metal dispersion from 22 to 3 % while the surface area of the catalyst remained unaffected. The adsorption of sulfur on catalytically active sites was found to be reversible by thermogravimetric analysis. This finding was supported through reactor studies. Despite this reversibility, the sulfur-induced coke had lasting effects on catalyst performance after regeneration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kang I, Bae J, Bae G (2006) Performance comparison of autothermal reforming for liquid hydrocarbons, gasoline and diesel for fuel cell applications. J Power Sources 163:538–546. doi:10.1016/j.jpowsour.2006.09.035

    Article  CAS  Google Scholar 

  2. Cheekatamarla PK, Lane AM (2005) Catalytic autothermal reforming of diesel fuel for hydrogen generation in fuel cells: I. Activity tests and sulfur poisoning. J Power Sources 152:256–263. doi:10.1016/j.jpowsour.2005.03.209

    Article  CAS  Google Scholar 

  3. Cheekatamarla PK, Lane AM (2006) Catalytic autothermal reforming of diesel fuel for hydrogen generation in fuel cells: II. Catalyst poisoning and characterization studies. J Power Sources 154:223–231. doi:10.1016/j.jpowsour.2005.04.011

    Article  CAS  Google Scholar 

  4. Won SJ, Nam KJ, Park YW (2000) Method for manufacturing capacitor of semiconductor device including thermal treatment to dielectric film under hydrogen atmosphere. U.S. Patent No. 6,136,641. U.S. Patent and Trademark Office, Washington, DC

  5. Denys RV, Poletaev AA, Solberg JK et al (2010) LaMg11 with a giant unit cell synthesized by hydrogen metallurgy: crystal structure and hydrogenation behavior. Acta Mater 58:2510–2519. doi:10.1016/j.actamat.2009.12.037

    Article  CAS  Google Scholar 

  6. Dutta S (2014) A review on production, storage of hydrogen and its utilization as an energy resource. J Ind Eng Chem 20:1148–1156. doi:10.1016/j.jiec.2013.07.037

    Article  CAS  Google Scholar 

  7. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260. doi:10.1016/j.cattod.2008.08.039

    Article  CAS  Google Scholar 

  8. Birot A, Epron F, Descorme C, Duprez D (2008) Ethanol steam reforming over Rh/CexZr1-xO2 catalysts: impact of the CO–CO2–CH4 interconversion reactions on the H2 production. Appl Catal B 79:17–25. doi:10.1016/j.apcatb.2007.10.002

    Article  CAS  Google Scholar 

  9. Cavallaro S (2000) Ethanol steam reforming on Rh/Al 2 O 3 catalysts. Energy Fuels 14:1195–1199. doi:10.1021/ef0000779

    Article  CAS  Google Scholar 

  10. Hulteberg C (2012) Sulphur-tolerant catalysts in small-scale hydrogen production, a review. Int J Hydrogen Energy 37:3978–3992. doi:10.1016/j.ijhydene.2011.12.001

    Article  CAS  Google Scholar 

  11. Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrogen Energy 32:3238–3247. doi:10.1016/j.ijhydene.2007.04.038

    Article  CAS  Google Scholar 

  12. Zheng Q, Janke C, Farrauto R (2014) Steam reforming of sulfur-containing dodecane on a Rh–Pt catalyst: influence of process parameters on catalyst stability and coke structure. Appl Catal B 160–161:525–533. doi:10.1016/j.apcatb.2014.05.044

    Article  Google Scholar 

  13. Comas J, Mariño F, Laborde M, Amadeo N (2004) Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chem Eng J 98:61–68. doi:10.1016/S1385-8947(03)00186-4

    Article  CAS  Google Scholar 

  14. Yamazaki T, Kikuchi N, Katoh M et al (2010) Behavior of steam reforming reaction for bio-ethanol over Pt/ZrO2 catalysts. Appl Catal B 99:81–88. doi:10.1016/j.apcatb.2010.06.003

    Article  CAS  Google Scholar 

  15. Swartz SL, Matter PH, Arkenberg GB et al (2009) Hydrogen production from E85 fuel with ceria-based catalysts. J Power Sources 188:515–520. doi:10.1016/j.jpowsour.2008.12.006

    Article  CAS  Google Scholar 

  16. Simson A, Farrauto R, Castaldi M (2011) Steam reforming of ethanol/gasoline mixtures: deactivation, regeneration and stable performance. Appl Catal B 106:295–303. doi:10.1016/j.apcatb.2011.05.027

    Article  CAS  Google Scholar 

  17. Lausche AC, Schaidle JA, Thompson LT (2011) Understanding the effects of sulfur on Mo2C and Pt/Mo2C catalysts: methanol steam reforming. Appl Catal A 401:29–36. doi:10.1016/j.apcata.2011.04.037

    Article  CAS  Google Scholar 

  18. Ferrandon M, Mawdsley J, Krause T (2008) Effect of temperature, steam-to-carbon ratio, and alkali metal additives on improving the sulfur tolerance of a Rh/La–Al2O3 catalyst reforming gasoline for fuel cell applications. Appl Catal A 342:69–77. doi:10.1016/j.apcata.2008.03.001

    Article  CAS  Google Scholar 

  19. Lakhapatri SL, Abraham MA (2009) Deactivation due to sulfur poisoning and carbon deposition on Rh-Ni/Al2O3 catalyst during steam reforming of sulfur-doped n-hexadecane. Appl Catal A 364:113–121. doi:10.1016/j.apcata.2009.05.035

    Article  CAS  Google Scholar 

  20. Xie C, Chen Y, Li Y et al (2010) Sulfur poisoning of CeO2–Al2O3-supported mono- and bi-metallic Ni and Rh catalysts in steam reforming of liquid hydrocarbons at low and high temperatures. Appl Catal A 390:210–218. doi:10.1016/j.apcata.2010.10.012

    Article  CAS  Google Scholar 

  21. Rabe S, Vogel F, Truong TB et al (2009) Catalytic reforming of gasoline to hydrogen: kinetic investigation of deactivation processes. Int J Hydrogen Energy 34:8023–8033. doi:10.1016/j.ijhydene.2009.07.055

    Article  CAS  Google Scholar 

  22. Wang L, Murata K, Inaba M (2004) Control of the product ratio of CO2/(CO + CO2) and inhibition of catalyst deactivation for steam reforming of gasoline to produce hydrogen. Appl Catal B 48:243–248. doi:10.1016/j.apcatb.2003.11.001

    Article  CAS  Google Scholar 

  23. Qi A, Wang S, Ni C, Wu D (2007) Autothermal reforming of gasoline on Rh-based monolithic catalysts. Int J Hydrogen Energy 32:981–991. doi:10.1016/j.ijhydene.2006.06.072

    Article  CAS  Google Scholar 

  24. Delahay G, Duprez D (1989) Effect of sulphur on the coking of rhodium in the steam reforming of 1-methylnaphthalene. Appl Catal 53:95–105. doi:10.1016/S0166-9834(00)80014-7

    Article  CAS  Google Scholar 

  25. Chen Y, Xie C, Li Y et al (2010) Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study. Phys Chem Chem Phys 12:5707–5711. doi:10.1039/b925910b

    Article  CAS  Google Scholar 

  26. Xie C, Chen Y, Engelhard MH, Song C (2012) Comparative study on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbon fuel. ACS Catal 2:1127–1137. doi:10.1021/cs200695t

    Article  CAS  Google Scholar 

  27. Heck RM, Farrauto RJ, Gulati ST (2009) Catalytic air pollution control: commercial technology. Wiley, New York

    Book  Google Scholar 

  28. Farrauto RJ, Liu Y, Ruettinger W et al (2007) Precious metal catalysts supported on ceramic and metal monolith structure for the hydrogen economy. Catal Rev 49:141–196

    Article  CAS  Google Scholar 

  29. Torres JA, Llorca J, Casanovas A et al (2007) Steam reforming of ethanol at moderate temperature: multifactorial design analysis of Ni/La2O3–Al2O3, and Fe- and Mn-promoted Co/ZnO catalysts. J Power Sources 169:158–166. doi:10.1016/j.jpowsour.2007.01.057

    Article  CAS  Google Scholar 

  30. Rostrup-Nielsen JR, Christensen TS, Dybkjaer I (1998) Recent advances in basic and applied aspects of industrial catalysis. In: Proceedings of 13th national symposium and silver jubilee symposium of catalysis of India. Studies in surface science and catalysis, Elsevier, pp 81–95

  31. Bion N, Duprez D, Epron F (2012) Design of nanocatalysts for green hydrogen production from bioethanol. ChemSusChem 5:76–84. doi:10.1002/cssc.201100400

    Article  CAS  Google Scholar 

  32. Barker J, Richards P, Pinch D, Cheeseman B (2010) Temperature programmed oxidation as a technique for understanding diesel fuel system deposits. SAE Int J Fuels Lubr 3:85–99. doi:10.4271/2010-01-1475

    Article  CAS  Google Scholar 

  33. Rodriguez NM (1993) A review of catalytically grown carbon nanofibers. J Mater Res 8:3233–3250. doi:10.1557/JMR.1993.3233

    Article  CAS  Google Scholar 

  34. Boon J, Van Dijk E, De Munck S, Van Den Brink R (2011) Steam reforming of commercial ultra-low sulphur diesel. J Power Sources 196:5928–5935. doi:10.1016/j.jpowsour.2011.03.009

    Article  CAS  Google Scholar 

  35. Sehested J, Gelten JAP, Helveg S (2006) Sintering of nickel catalysts: effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants. Appl Catal A 309:237–246. doi:10.1016/j.apcata.2006.05.017

    Article  CAS  Google Scholar 

  36. Lu Y, Chen J, Liu Y et al (2008) Highly sulfur-tolerant Pt/Ce 0.8 Gd 0.2 O 1.9 catalyst for steam reforming of liquid hydrocarbons in fuel cell applications. J Catal 254:39–48. doi:10.1016/j.jcat.2007.11.015

    Article  CAS  Google Scholar 

  37. Bartholomew CH, Agrawal PK, Katzer JR (1982) Sulfur poisoning of metals. In: Eley DD, Paul BW (eds) Advances in catalysis, vol 31. Academic Press, New York, pp 136–242

    Google Scholar 

  38. Goud SK, Whittenberger WA, Chattopadhyay S, Abraham MA (2007) Steam reforming of n-hexadecane using a Pd/ZrO2 catalyst: kinetics of catalyst deactivation. Int J Hydrogen Energy 32:2868–2874. doi:10.1016/j.ijhydene.2007.03.019

    Article  CAS  Google Scholar 

  39. Carrero A, Calles JA, Vizcaíno AJ (2010) Effect of Mg and Ca addition on coke deposition over Cu-Ni/SiO2 catalysts for ethanol steam reforming. Chem Eng J 163:395–402. doi:10.1016/j.cej.2010.07.029

    Article  CAS  Google Scholar 

  40. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R 37:129–281

    Article  Google Scholar 

  41. Espinat D, Dexpert H, Freund E et al (1985) Characterization of the coke formed on reforming catalysts by laser raman spectroscopy. Appl Catal 16:343–354. doi:10.1016/S0166-9834(00)84398-5

    Article  CAS  Google Scholar 

  42. Fullerton DJ, Westwood AVK, Brydson R et al (2003) Deactivation and regeneration of Pt/γ-alumina and Pt/ceria–alumina catalysts for methane combustion in the presence of H2S. Catal Today 81:659–671. doi:10.1016/S0920-5861(03)00164-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco J. Castaldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simson, A., Crowley, S. & Castaldi, M.J. The Impact of Sulfur on Ethanol Steam Reforming. Catal Lett 146, 1361–1372 (2016). https://doi.org/10.1007/s10562-016-1749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1749-y

Keywords

Navigation