Skip to main content
Log in

High Pressure CO Hydrogenation Over Bimetallic Pt–Co Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The potential of bimetallic Pt–Co catalysts for production of higher alcohols in high pressure CO hydrogenation has been assessed. Two catalysts (Pt3Co/SiO2 and PtCo/SiO2) were tested, and the existing literature on CO hydrogenation over Pt–Co catalysts was reviewed. It is found that the catalysts produce mainly methanol in the Pt-rich composition range and mainly hydrocarbons (and to a modest extent higher alcohols) in the Co-rich composition range. The transition between the two types of behavior occurs in a narrow composition range around a molar Pt:Co ratio of 1:1.

Graphical Abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Subramani V, Gangwal SK (2008) Energy Fuels 22:814–839

    Article  CAS  Google Scholar 

  2. Spivey JJ, Egbebi A (2007) Chem Soc Rev 36:1514–1528

    Article  CAS  Google Scholar 

  3. Phillips SD (2007) Ind Eng Chem Res 46:8887–8897

    Article  CAS  Google Scholar 

  4. Herman RG (2000) Catal Today 55:233–245

    Article  CAS  Google Scholar 

  5. Herman RG (1991) Stud Surf Sci Catal 64:265–349

    Article  CAS  Google Scholar 

  6. Courty P, Durand D, Freund E, Sugier A (1982) J Mol Catal 17:241–254

    Article  CAS  Google Scholar 

  7. Courty P, Chaumette P, Rimbault C, Travers P (1990) Oil Gas Sci Technol 45:561–578

    CAS  Google Scholar 

  8. Matsuzaki T, Hanaoka T, Takeuchi K, Arakawa H, Sugi Y, Wei K, Dong T, Reinikainen M (1997) Catal Today 36:311–324

    Article  CAS  Google Scholar 

  9. Matsuzaki T, Takeuchi K, Hanaoka T, Arakawa H, Sugi Y (1996) Catal Today 28:251–259

    Article  CAS  Google Scholar 

  10. Matsuzaki T, Takeuchi K, Hanaoka TA, Arawaka H, Sugi Y (1993) Appl Catal A 105:159–184

    Article  CAS  Google Scholar 

  11. Kumar N, Smith ML, Spivey JJ (2012) J Catal 289:218–226

    Article  CAS  Google Scholar 

  12. Lin M, Fang K, Li D, Sun Y (2008) Catal Commun 9:1869–1873

    Article  CAS  Google Scholar 

  13. Lu Y, Yu F, Hu J, Liu J (2012) Appl Catal A 429:48–58

    Article  Google Scholar 

  14. Niemantsverdriet JW, Louwers SPA, van Grondelle J, van der Kraan AM, Kampers FWH, Koningsberger DC (1988) In: Phillips MJ, Ternan M (eds) Proceedings 9th International Congress on Catalysis, vol 2, p 674–681

  15. Ponec V (1992) Catal Today 12:227–254

    Article  CAS  Google Scholar 

  16. Baetzold RC, Monnier JR (1986) J Phys Chem 90:2944–2949

    Article  CAS  Google Scholar 

  17. Medford AJ, Lausche AC, Abild-Pedersen F, Temel B, Schjødt NC, Nørskov JK, Studt F (2014) Top Catal 57:135–142

    Google Scholar 

  18. Vada S, Hoff A, Ådnanes E, Schanke D, Holmen A (1995) Top Catal 2:155–162

    Article  CAS  Google Scholar 

  19. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal A 233:263–281

    Article  CAS  Google Scholar 

  20. Diehl F, Khodakov AY (2009) Oil Gas Sci Technol 64:11–24

    Article  CAS  Google Scholar 

  21. Jacobs G, Ji Y, Davis BH, Cronauer D, Kropf AJ, Marshall CL (2007) Appl Catal A 333:177–191

    Article  CAS  Google Scholar 

  22. Christensen JM, Mortensen PM, Trane R, Jensen PA, Jensen AD (2009) Appl Catal A 366:29–43

    Article  CAS  Google Scholar 

  23. Rasmussen CL, Hansen J, Marshall P, Glarborg P (2008) Int J Chem Kinet 40:454–480

    Article  CAS  Google Scholar 

  24. Christensen JM, Jensen PA, Jensen AD (2011) Ind Eng Chem Res 50:7949–7963

    Article  CAS  Google Scholar 

  25. Shannon RD, Rogers DB, Prewitt CT (1971) Inorg Chem 10:713–718

    Article  CAS  Google Scholar 

  26. Schwartz KB, Parise JB, Prewitt CT, Shannon RD (1983) Acta Crystallogr B 39:217–226

    Article  Google Scholar 

  27. Lu G, Hoffer T, Guczi L (1992) Catal Lett 14:207–220

    Article  CAS  Google Scholar 

  28. Jen SU (1996) J Alloys Compd 234:231–234

    Article  CAS  Google Scholar 

  29. Mayrhofer KJJ, Juhart V, Hartl K, Hanzlik M, Arenz M (2009) Angew Chem Int Ed 48:3529–3531

    Article  CAS  Google Scholar 

  30. Woolley JC, Phillips JH, Clark JA (1964) J Less Common Met 6:461–471

    Article  CAS  Google Scholar 

  31. Buschow KHJ, Van Engen PG, Jongebreur R (1983) J Magn Magn Mater 38:1–22

    Article  CAS  Google Scholar 

  32. Gauthier Y, Schmid M, Padovani S, Lundgren E, Buš V, Kresse G, Redinger J, Varga P (2001) Phys Rev Lett 87:036103

    Article  CAS  Google Scholar 

  33. Bardi U, Beard BC, Ross PN (1990) J Catal 124:22–29

    Article  CAS  Google Scholar 

  34. Alayoglu S, Beaumont SK, Zheng F, Pushkarev VV, Zheng H, Iablokov V, Liu Z, Guo J, Kruse N, Somorjai GA (2011) Top Catal 54:778–785

    Article  CAS  Google Scholar 

  35. Dumesic JA, Rudd DF, Aparicio LM, Rkoske JE, Treviño AA (1993) The microkinetics of heterogeneous catalysis. The American Chemical Society, Washington, DC

    Google Scholar 

  36. Fukuoka A, Kimura T, Ichikawa M (1988) J Chem Soc Chem Commun 428–430

  37. Iglesia E (1997) Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  38. Studt F, Abild-Pedersen F, Wu Q, Jensen AD, Temel B, Grunwaldt JD, Nørskov JK (2012) J Catal 293:51–60

    Article  CAS  Google Scholar 

  39. Lausche AC, Medford AJ, Khan TS, Xu Y, Bligaard T, Abild-Pedersen F, Nørskov JK, Studt F (2013) J Catal 307:275–282

    Article  CAS  Google Scholar 

  40. Lu G, Hoffer T, Guczi L (1992) Appl Catal A 93:61–73

    Article  CAS  Google Scholar 

  41. Guczi L, Hoffer T, Zsoldos Z, Zyade S, Maire G, Garin F (1991) J Phys Chem 95:802–808

    Article  CAS  Google Scholar 

  42. Gnanamani MK, Ribeiro MC, Ma W, Shafer WD, Jacobs G, Graham UM, Davis BH (2011) Appl Catal A 393:17–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The experimental work is financed by the Danish Ministry for Science, Technology and Development under the “Catalysis for Sustainable Energy” initiative. We thank Diego Gardini for aid in the XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anker D. Jensen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, J.M., Medford, A.J., Studt, F. et al. High Pressure CO Hydrogenation Over Bimetallic Pt–Co Catalysts. Catal Lett 144, 777–782 (2014). https://doi.org/10.1007/s10562-014-1220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1220-x

Keywords

Navigation