Skip to main content

Advertisement

Log in

Ethanol Steam Reforming to Produce Hydrogen Over Co/ZnO and PtCo/ZnO Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, hydrogen production using ethanol steam reforming (ESR) over monometallic Cox/ZnO and bimetallic PtyCo10/ZnO catalysts was investigated. Cox/ZnO (5, 10, 15 and 20 wt% Co) and PtyCo10/ZnO catalysts (0.1, 0.5 and 1.0 wt% Pt and 10 wt% Co) were prepared by the incipient wetness impregnation (IWI) method. The catalytic activity of the ESR was evaluated in a fixed-bed reactor under 22,000 h−1 gas hourly space velocity and an H2O/EtOH molar ratio of 13. According to the results we find that the optimum loading of Co10/ZnO catalyst exhibited higher surface area and better catalytic activity for the ESR reaction. Further, in order to understand the catalytic performance over Co-based catalysts for the ESR reaction, other focused on the effect of Pt loading. The Pt0.5Co10/ZnO catalyst showed the best intimately mixed and synergistic effect, combining the advantages of the Pt and Co catalysts, respectively, i.e. Pt was active for the dehydrogenation of ethanol and decomposition of acetaldehyde at temperatures lower than 300 °C; Co was active for the reforming of acetaldehyde. The product distribution showed that good performance was achieved at 325 °C with a composition of H2/CO2/CH4/CO equal to 73.2/23.8/2.4/0.6 %.

Graphical Abstract

The Pt0.5Co10/ZnO catalyst shows high catalytic activity at 325 °C with a composition of H2/CO2/CH4/CO equal to 73.2%/23.8%/2.4%/0.64%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094

    Article  CAS  Google Scholar 

  2. Bion N, Duprez D, Epron F (2012) ChemSusChem 5:76

    Article  CAS  Google Scholar 

  3. de la Piscina PR, Homs N (2008) Chem Soc Rev 37:2459

    Article  Google Scholar 

  4. Ni M, Leung DYC, Leung MKH (2007) Int J Hydrogen Energy 32:3238

    Article  CAS  Google Scholar 

  5. Llorca J, Homs N, Sales J, de la Piscina PR (2002) J Catal 209:306

    Article  CAS  Google Scholar 

  6. Wang CB, Lee CC, Bi JL, Siang JY, Liu JY, Yeh CT (2009) Catal Today 146:76

    Article  CAS  Google Scholar 

  7. Liu JY, Lee CC, Wang CH, Yeh CT, Wang CB (2010) Int J Hydrogen Energy 35:4069

    Article  CAS  Google Scholar 

  8. Llorca J, de la Piscina PR, Sales J, Homs N (2001) Chem Common 46:641

    Article  Google Scholar 

  9. Yang Y, Ma J, Wu F (2006) Int J Hydrogen Energy 31:877

    Article  CAS  Google Scholar 

  10. Homs N, Llorca J, de la Piscina PR (2006) Catal Today 116:361

    Article  CAS  Google Scholar 

  11. Lin SSY, Kim DH, Ha SY (2009) Appl Catal A 355:69

    Article  CAS  Google Scholar 

  12. Lorenzut B, Montini T, De Rogatis L, Canton P, Benedetti A, Fornasiero P (2011) Appl Catal B 101:397

    Article  CAS  Google Scholar 

  13. de la Piscina PR, Homs N (2008) Chem Soc Rev 37:2459

    Article  Google Scholar 

  14. de Lima SM, da Silva AM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2010) Appl Catal B 96:387

    Article  Google Scholar 

  15. Jacobs G, Keogh RA, Davis BH (2007) J Catal 245:326

    Article  CAS  Google Scholar 

  16. Mattos LV, Noronha FB (2005) J Catal 233:453

    Article  CAS  Google Scholar 

  17. Mattos LV, Noronha FB (2005) J Power Sources 145:10

    Article  CAS  Google Scholar 

  18. de Lima SM, da Cruz IO, Jacobs G, Davis BH, Mattos LV, Noronha FB (2008) J Catal 257:356

    Article  Google Scholar 

  19. Sanchez–Sanchez MC, Yerga RMN, Kondarides DI, Verykios XE, Fierro JLG (2010) J Phys Chem A 114:3873

    Article  Google Scholar 

  20. Silva FA, Hori CE, da Silva AM, Mattos LV, Múnera J, Cornaglia L, Noronha FB, Lombardo E (2012) Catal Today 193:64

    Article  CAS  Google Scholar 

  21. Ammari F, Lamotte J, Touroude R (2004) J Catal 221:32

    Article  CAS  Google Scholar 

  22. Ramos-Fernández EV, Ferreira AFP, Sepúlveda-Escribano A, Kapteijn F, Rodríguez-Reinoso F (2008) J Catal 258:52

    Article  Google Scholar 

  23. Alonso DM, Wettstein SG, Dumesic JA (2012) Chem Soc Rev 41:8075

    Article  CAS  Google Scholar 

  24. Casanovas A, de Leitenburg C, Trovarelli A, Llorca J (2009) Chem Eng J 154:267

    Article  CAS  Google Scholar 

  25. Cai W, de la Piscina PR, Homs N (2012) Bioresour Technol 107:482

    Article  CAS  Google Scholar 

  26. Cai W, Homs N, de la Piscina PR (2012) Green Chem 14:1035

    Article  CAS  Google Scholar 

  27. Pereira EB, de la Piscina PR, Homs N (2011) Bioresour Technol 102:3419

    Article  CAS  Google Scholar 

  28. Pereira EB, de la Piscina PR, Martí S, Homs N (2011) Energy Environ Sci 3:487

    Article  Google Scholar 

  29. Pereira EB, Homs N, Martí S, Fierro JLG, de la Piscina PR (2008) J Catal 257:206

    Article  CAS  Google Scholar 

  30. Hsu SN, Bi JL, Wang WF, Yeh CT, Wang CB (2008) Int J Hydrogen Energy 33:693

    Article  CAS  Google Scholar 

  31. Bi JL, Hong YY, Lee CC, Yeh CT, Wang CB (2007) Catal Today 129:322

    Article  CAS  Google Scholar 

  32. Bi JL, Hsu SN, Yeh CT, Wang CB (2007) Catal Today 129:330

    Article  CAS  Google Scholar 

  33. Chiou JYZ, Siang JY, Yang SY, Ho KF, Lee CL, Yeh CT, Wang CB (2012) Int J Hydrogen Energy 37:13667

    Article  CAS  Google Scholar 

  34. Chiou JYZ, Wang WY, Yeh CT, Wang CB (2012) J Surf Sci Nanotech 10:431

    Article  CAS  Google Scholar 

  35. Llorca J, Dalmon JA, de la Piscina PR, Homs N (2003) Appl Catal A 243:261

    Article  CAS  Google Scholar 

  36. Wang H, Ye JL, Li YD, Qin YN (2007) Catal Today 129:305

    Article  CAS  Google Scholar 

  37. Llorca J, Homs N, Sales J, Fierro JLG, de la Piscina PR (2004) J Catal 222:470

    Article  CAS  Google Scholar 

  38. Guil JM, Homs N, Llorca J, de la Piscina PR (2005) J Phys Chem B 109:10813

    Article  CAS  Google Scholar 

  39. Murthy RS, Patnaik P, Sidheswaran P, Jayamani M (1988) J Catal 109:298

    Article  CAS  Google Scholar 

  40. Hu X, Lu GX (2009) Appl Catal B 88:376

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are pleased to acknowledge the financial support for this study by the National Science Council of the Republic of China under contract numbers of NSC 99-2113-M-606-001-MY3 and NSC 101-2623-E-155-001-ET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiou, J.Y.Z., Wang, WY., Yang, SY. et al. Ethanol Steam Reforming to Produce Hydrogen Over Co/ZnO and PtCo/ZnO Catalysts. Catal Lett 143, 501–507 (2013). https://doi.org/10.1007/s10562-013-0975-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-0975-9

Keywords

Navigation