Skip to main content

Advertisement

Log in

Fischer–Tropsch Synthesis: Preconditioning Effects Upon Co-Containing Promoted and Unpromoted Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the preparation and evaluation of Fischer–Tropsch (FT) catalysts, active catalysts formed by both incipient wetness impregnation (IWI) and atomic layer deposition (ALD) of major components were demonstrated. ALD-deposited Co on a silica support was more effective than a similar catalyst deposited upon a support of ALD-deposited Al2O3 on silica. The addition of Co reduction promoters including Pt, Ir and Ru using either ALD or IWI has been shown to strongly affect the catalyst pre-conditioning step. CO conversion results were consistent with previously reported Temperature Programmed Reduction X-ray Absorption Near-edge Structure/Extended X-ray Absorption Fine Structure Spectroscopy (TPR-XANES/EXAFS) experiments observing the nature of chemical transformations occurring during the activation of cobalt-based FT catalysts in hydrogen. Specifically, there exists a 2-step reduction process involving Co3O4 to CoO and CoO to Co0 transformations. The extent of catalyst preconditioning was strongly affected by the reduction temperature (with 400 °C preferred) and the loading of the promoter. This was demonstrated using a continuous-flow catalytic-bed unit with a 2:1 molar blend of H2:CO, at temperatures ranging from about 260 to 300 °C, pressures averaging 1.3 MPa (190 psia), and gas space velocities about 24 NL/h-g.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Schulz H, Claeys M (1999) Appl Catal A Gen 186:1

    Article  CAS  Google Scholar 

  2. Steynberg A, Dry M (eds) (2004) Stud Surf Sci Catal 152

  3. van der Laan GP, Beenackers AACM (1999) Catal Rev Sci Eng 41:255

    Article  Google Scholar 

  4. Satterfield CN (1996) Heterogeneous catalysis in industrial practice, 2nd edn. Krieger Publ. Co., Malabar

    Google Scholar 

  5. Davis BH, Technology Development for Iron Fischer–Tropsch Catalysts, Final Technical Report, Dec. 18, 1990–Dec. 17, 1993, DE96005561, DOE/PC/90056–T17, 12/31/96

  6. Iglesia E (1997) Appl Catal A Gen 161:59

    Article  CAS  Google Scholar 

  7. van Steen E, Claeys M, Dry ME, van de Loosdrecht J, Viljoen EL, Visagie JL (2005) J Phys Chem B 109:3575

    Article  Google Scholar 

  8. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu XD et al (2006) J Am Chem Soc 128:3956

    Article  CAS  Google Scholar 

  9. Borg Ø, Dietzel PDC, Spjelkavik A, Tvetenc EZ, Walmsleyd JC, Diplasb S (2008) J Catal 259:164

    Google Scholar 

  10. Jacobs G, Ji Y, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2007) Appl Catal A Gen 333:177

    Article  CAS  Google Scholar 

  11. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal A Gen 233:263

    Article  CAS  Google Scholar 

  12. Guczi L, Bazin D, Kovacs I, Borko L, Schay Z, Lynch J, Parent P, Lafon C, Stefler G, Koppany Z, Sajo I (2002) Top Catal 20:129

    Article  CAS  Google Scholar 

  13. Kogelbauer A, Goodwin JG Jr, Oukaci R (1996) J Catal 160:125

    Article  CAS  Google Scholar 

  14. Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A (1995) J Catal 156:85

    Article  CAS  Google Scholar 

  15. Hilman AM, Schanke D, Holmen A (1996) Catal Lett 38:143

    Article  Google Scholar 

  16. Hilmen AM, Schanke D, Hanssen KF, Holmen A (1999) Appl Catal A Gen 186:169

    Article  CAS  Google Scholar 

  17. Jacobs G, Chaney JA, Patterson PM, Das TK, Maillot JC, Davis BH (2004) J Synchrotron Radiat 11:414

    Article  CAS  Google Scholar 

  18. Jacobs G, Chaney JA, Patterson PM, Das TK, Davis BH (2004) Appl Catal A Gen 264:203

    Article  CAS  Google Scholar 

  19. Ma W, Jacobs G, Ji Y, Bhatelia T, Bukur DB, Khalid S, Davis BH (2011) Top Catal 54:757

    Article  CAS  Google Scholar 

  20. Bazin D, Borko L, Koppany Zs, Kovacs I, Stefler G, Sajo L, Schay Z, Guczi L (2002) Catal Lett 84:169

  21. George SM (2010) Chem Rev 110:111

    Article  CAS  Google Scholar 

  22. Feng YH, Elam JW, Libera JA, Pellin MJ, Stair PC (2010) J Catal 269:421

    Article  CAS  Google Scholar 

  23. Elam JW, Groner MD, George SM (2002) Rev Sci Inst 73:2981

    Google Scholar 

  24. Christensen ST, Elam JW (2010) Chem Mater 22:2517

    Article  CAS  Google Scholar 

  25. Ott AW, Klaus JW, Johnson JM, George SM (1997) Thin Solid Films 292:135

    Article  CAS  Google Scholar 

  26. Nilsen O, Lie M, Foss S, Fjellvag H, Kjekshus A (2004) Appl Surf Sci 227:40

    Article  CAS  Google Scholar 

  27. Aaltonen T, Alen P, Ritala M, Leskela M (2003) Chem Vapor Deposition 9:45

    Article  CAS  Google Scholar 

  28. Jacoby M (2001) Chem Eng News 79:33

    Google Scholar 

  29. Ressler T (1998) J Synchrotron Radiat 5:118

    Article  CAS  Google Scholar 

  30. Ravel B (2001) J Synchrotron Radiat 8:314

    Article  CAS  Google Scholar 

  31. Rehr JJ, Zabinsky SI, Albers RC (1992) Phys Rev Lett 69:3397

    Article  CAS  Google Scholar 

  32. Newville M, Ravel B, Haskel D, Stern EA, Yacoby Y (2005) Phys B 208/209:154

    Google Scholar 

  33. Soled SL, Iglesia E, Fiato RA, Baumgartner JE, Vroman H, Miseo S (2003) Top Catal 26:101

    Article  CAS  Google Scholar 

  34. Li J, Jacobs G, Das TK, Zhang YQ, Davis BH (2002) Appl Catal 236:67

    Article  CAS  Google Scholar 

  35. Sietsma JRA, Meeldijk JD, den Breejen JP, Versluijs-Helder M, van Dillen AJ, de Jongh PE, de Jong KP (2007) Angew Chem Int Ed 46:4547

    Article  CAS  Google Scholar 

  36. Jacobs G, Ma W, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2010) Catal Lett 140:106

    Article  CAS  Google Scholar 

  37. Cronauer DC, Jacobs G, Linganiso L, Kropf AJ, Elam JW, Christensen ST, Marshall CL, Davis BH (2011) Catal Lett 141:968

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work carried out at the CAER was supported in part by funding from a grant from NASA (#NNX07AB93A), as well as the Commonwealth of Kentucky. Argonne’s research was supported in part by the U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (NETL) under Project AA-10-15; 49261-00-107. The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. J.W. Elam was supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Science. The SEM scans were prepared by D.J. Schroeder and A. Hubaud using a FEI Quanta 400F ESEM unit. The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald C. Cronauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronauer, D.C., Elam, J.W., Kropf, A.J. et al. Fischer–Tropsch Synthesis: Preconditioning Effects Upon Co-Containing Promoted and Unpromoted Catalysts. Catal Lett 142, 698–713 (2012). https://doi.org/10.1007/s10562-012-0818-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0818-0

Keywords

Navigation