Skip to main content

Advertisement

Log in

In-situ infrared thermographic analysis during dehydrogenationof cyclohexane over carbon-supported Pt catalysts using spray-pulsed reactor

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Infrared thermography, a tool used for screening of active catalytic materials generally during the exothermic reactions has been used for thermal imaging during strong endothermic reaction of dehydrogenation of cyclohexane on Pt catalyst supported on active carbon cloth (CFF-1500s) sheets. A spray-pulsed mode was used for injection of atomized cyclohexane and to create alternate wet and dry condition on catalyst surface. The simultaneous product gas analysis and recording of the temperature profile of the catalyst surface using an IR camera was carried out. The production rate of hydrogen via endothermic dehydrogenation reaction is greatly dependent on the temperature of the catalyst surface. The observed change in the temperature profile at wet and dry conditions with varying pulse-injection frequency and corresponding product gas analysis reveals that the spray-pulse mode is useful in improving the catalyst activity. Further the reaction conditions were optimized using thermal profile data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.C. Pawlicki R.A. Schmitz (1987) Chem. Eng. Prog 83 IssueID2 40 Occurrence Handle1:CAS:528:DyaL2sXhtVymtb0%3D

    CAS  Google Scholar 

  2. L. Lobban G. Philippou D. Luss (1989) J. Phys. Chem 93 733 Occurrence Handle10.1021/j100339a045 Occurrence Handle1:CAS:528:DyaL1MXmsVemsw%3D%3D

    Article  CAS  Google Scholar 

  3. J.C. Kellow E.E. Wolf (1990) Chem. Eng. Sci 45 IssueID8 2597 Occurrence Handle1:CAS:528:DyaK3cXlvFyru7c%3D

    CAS  Google Scholar 

  4. J.C. Kellow E.E. Wolf (1991) Catal. Today 9 47 Occurrence Handle10.1016/0920-5861(91)85006-T Occurrence Handle1:CAS:528:DyaK3MXisFCltLY%3D

    Article  CAS  Google Scholar 

  5. F. Qin E.E. Wolf (1995) Ind. Eng. Chem. Res 34 2923 Occurrence Handle10.1021/ie00048a001 Occurrence Handle1:CAS:528:DyaK2MXns1equrg%3D

    Article  CAS  Google Scholar 

  6. F.C. Moates M. Somani J. Annamalai J.T. Richardson D. Luss R.C. Willson (1996) Ind. Eng. Chem. Res 35 4801 Occurrence Handle10.1021/ie960476k Occurrence Handle1:CAS:528:DyaK28XmslCgsLg%3D

    Article  CAS  Google Scholar 

  7. S.J. Taylor J.P. Morken (1998) Science 280 267 Occurrence Handle10.1126/science.280.5361.267 Occurrence Handle1:CAS:528:DyaK1cXis1Slsb4%3D Occurrence Handle9535652

    Article  CAS  PubMed  Google Scholar 

  8. A. Holzwarth H.W. Schmidt W.F. Maier (1998) Angew. Chem. Int. Ed 37 IssueID9 2644 Occurrence Handle10.1002/(SICI)1521-3773(19981016)37:19<2644::AID-ANIE2644>3.0.CO;2-# Occurrence Handle1:CAS:528:DyaK1cXnt1KrtLo%3D

    Article  CAS  Google Scholar 

  9. M.T. Reetz M.H. Becker K.M. Kühling A. Holzwarth (1998) Angew. Chem. Int. Ed 37 IssueID9 2647 Occurrence Handle10.1002/(SICI)1521-3773(19981016)37:19<2647::AID-ANIE2647>3.3.CO;2-9 Occurrence Handle1:CAS:528:DyaK1cXnt1KrtLs%3D

    Article  CAS  Google Scholar 

  10. M.T. Reetz M.H. Becker M. Liebl A. Fürstner (2000) Angew. Chem. Int. Ed 39 IssueID7 1236 Occurrence Handle10.1002/(SICI)1521-3773(20000403)39:7<1236::AID-ANIE1236>3.0.CO;2-J Occurrence Handle1:CAS:528:DC%2BD3cXisFymtbY%3D

    Article  CAS  Google Scholar 

  11. I.H. Son A.M. Lane D.T. Johnson (2003) J. Power Sour 124 415 Occurrence Handle10.1016/S0378-7753(03)00807-3 Occurrence Handle1:CAS:528:DC%2BD3sXptFGrurg%3D

    Article  CAS  Google Scholar 

  12. R. Digilov O. Nekhamkina M. Sheintuch (2004) AIChE J 50 IssueID1 163 Occurrence Handle10.1002/aic.10015 Occurrence Handle1:CAS:528:DC%2BD2cXhs1WjsL8%3D

    Article  CAS  Google Scholar 

  13. J.K. Ali E.J. Newson D.W.T. Rippin (1994) Chem. Eng. Sci 49 IssueID13 2129 Occurrence Handle10.1016/0009-2509(94)E0035-O Occurrence Handle1:CAS:528:DyaK2cXltFehtbs%3D

    Article  CAS  Google Scholar 

  14. P. Taube M.A. Taube (1981) Adv. Hydr. Energy 2 1077 Occurrence Handle1:CAS:528:DyaL3MXltFygu7o%3D

    CAS  Google Scholar 

  15. D. Klvana J. Chaouki D. Kusohorsky C. Chavarie (1988) Appl. Catal 42 121 Occurrence Handle10.1016/S0166-9834(00)80080-9 Occurrence Handle1:CAS:528:DyaL1MXnsVKhsw%3D%3D

    Article  CAS  Google Scholar 

  16. N.F. Grünenfelder T.H. Schucan (1989) Int. J. Hydr. Energy 14 579 Occurrence Handle10.1016/0360-3199(89)90117-1

    Article  Google Scholar 

  17. S. Hodoshima H. Arai Y. Saito (2003) Int. J. Hydr. Energy 28 197 Occurrence Handle10.1016/S0360-3199(02)00032-0 Occurrence Handle1:CAS:528:DC%2BD38XovFehsb0%3D

    Article  CAS  Google Scholar 

  18. S. Hodoshima H. Arai S. Takaiwa Y. Saito (2003) Int. J. Hydr. Energy 28 1255 Occurrence Handle10.1016/S0360-3199(02)00250-1 Occurrence Handle1:CAS:528:DC%2BD3sXkvFyltbs%3D

    Article  CAS  Google Scholar 

  19. I. Kobayashi K. Yamamoto H. Kameyama (1999) Chem. Eng. Sci 54 1319 Occurrence Handle10.1016/S0009-2509(99)00054-8 Occurrence Handle1:CAS:528:DyaK1MXjtVaqs7o%3D

    Article  CAS  Google Scholar 

  20. N. Kariya A. Fukuoka M. Ichikawa (2002) Appl. Catal. A: Gen 233 91 Occurrence Handle10.1016/S0926-860X(02)00139-4 Occurrence Handle1:CAS:528:DC%2BD38XkslKisrY%3D

    Article  CAS  Google Scholar 

  21. N. Kariya A. Fukuoka T. Utagawa M. Sakuramoto Y. Goto M. Ichikawa (2003) Appl. Catal. A: Gen 247 247 Occurrence Handle10.1016/S0926-860X(03)00104-2 Occurrence Handle1:CAS:528:DC%2BD3sXls1agtbs%3D

    Article  CAS  Google Scholar 

  22. R.B. Biniwale A. Mizuno M. Ichikawa (2004) Appl. Catal. A: Gen 276 169 Occurrence Handle10.1016/j.apcata.2004.08.003 Occurrence Handle1:CAS:528:DC%2BD2cXovVyqtb8%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Ichikawa.

Additional information

Rajesh B. Biniwale-On deputation from NEERI, Nagpur India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biniwale, R.B., Yamashiro, H. & Ichikawa, M. In-situ infrared thermographic analysis during dehydrogenationof cyclohexane over carbon-supported Pt catalysts using spray-pulsed reactor. Catal Lett 102, 23–31 (2005). https://doi.org/10.1007/s10562-005-5198-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-5198-2

Keywords

Navigation