Skip to main content
Log in

The Method of Artificial Space Dilation in Problems of Optimal Packing of Geometric Objects

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The problem of optimal packing of geometric objects with specified shape and physical-metric parameters is considered. The combinatorial structure of the problem is defined. An equivalent problem is formulated based on the artificial expansion of space dimension with physical-metric parameters being independent variables. The proposed approach is illustrated by the solution of balanced circular packing problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. Stoyan, A. Pankratov, and T. Romanova, “Cutting and packing problems for irregular objects with continuous rotations: Mathematical modeling and nonlinear optimization,” J. of Operational Research Society, Vol. 67, No. 5, 786–800 (2016).

    Article  Google Scholar 

  2. J. A. Bennell, G. Scheithauer, Yu. Stoyan, T. Romanova, and A. Pankratov, “Optimal clustering of a pair of irregular objects,” J. of Global Optimization, Vol. 61, No. 3, 497–524 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Stoyan, A. Pankratov, and T. Romanova, “Quasi-phi-functions and optimal packing of ellipses,” J. of Global Optimization, Vol. 65, No. 2, 283–307 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Chernov, Yu. Stoyan, and T. Romanova, “Mathematical model and efficient algorithms for object packing problem,” Computational Geometry: Theory and Applications, Vol. 43, No. 5, 535–553 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Bortfeldt and G. Wascher, “Constraints in container loading: A state-of-the-art review,” European J. of Operational Research, Vol. 229, No. 1, 1–20 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Fasano, “Optimized packings with applications,” in: G. Fasano and J. D. Pinter (eds.), Optimization and Its Applications, Vol. 105, Springer, New York (2015).

    Google Scholar 

  7. M. Hifi and L. Yousef, “Handling lower bound and hill-climbing strategies for sphere packing problems,” in: S. Fidanova (ed.), Recent Advances in Computational Optimization Studies in Computational Intelligence, Vol. 610, Springer, New York (2016), pp. 145–164.

    Chapter  Google Scholar 

  8. R. M Hallah, A. Alkandari, and N. Mladenovic, “Packing unit spheres into the smallest sphere using VNS and NLP,” Computers and Operations Research, Vol. 40, No. 2, 603–615 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Vancroonenburg, J. Verstichel, K. Tavernier, and G. V. Berghe, Transportation Research, Pt. E: Logistics and Transportation Review, Pergamon (2014), pp. 70–83.

  10. Yu. G. Stoyan, “A generalization of dense packing function,” Dokl. AN USSR, No. 8, pp. 70–74 (1980).

  11. Yu. G. Stoyan, G. Scheithauer, and T. Romanova, “Φ-functions for primary 2D-objects,” Studia Informatica Universalis, Int. J. Informatics, Vol. 2, 1–32 (2002).

  12. O. S. Pichugina and S. V. Yakovlev, “Continuous representations and functional extensions in combinatorial optimization,” Cybern. Syst. Analysis, Vol. 52, No. 6, 921–930 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  13. O. S. Pichugina and S. V. Yakovlev, “Functional and analytic representations of the general permutations,” Eastern-European J. of Enterprise Technologies, Vol. 1, No. 4, 27–38 (2016).

    Article  MATH  Google Scholar 

  14. V. A. Emelichev, M. M. Kovalev, and M. K. Kravtsov, Polyhedra, Graphs, and Optimization (Combinatorial Theory of Polyhedra), Nauka, Moscow (1981).

  15. S. V. Yakovlev, “The theory of convex continuations of functions on vertices of convex polygons,” Computational Mathematics and Mathematical Physics, Vol. 34, No. 7, 1112–1119 (1994).

    MathSciNet  Google Scholar 

  16. O. Pichugina and S. Yakovlev, “Convex extensions and continuous functional representations in optimization with their applications,” J. Coupled Syst. Multiscale Dyn., Vol. 4, No. 2, 129–152 (2016).

    Article  MATH  Google Scholar 

  17. S. V. Yakovlev, “Bounds on the minimum of convex functions on Euclidean combinatorial sets,” Cybern. Syst. Analysis, Vol. 25, No. 3, 385–391 (1989).

    Article  MATH  Google Scholar 

  18. S. V. Yakovlev, “Combinatorial structure of optimal packing problems for geometrical objects,” Dokl. NAN Ukr., No. 9, 55–61 (2017).

  19. E. A. Nenakhov, T. E. Romanova, and P. I. Stetsyuk, “Balanced packing of circles in a circle of minimum radius,” Teoriya Optim. Reshenii, 143–153 (2013).

  20. P. I. Stetsyuk, T. E. Romanova, and G. Scheithauer, “On the global minimum in a balanced circular packing problem,” Optimization Letters, Vol. 10, No. 6, 1347–1360 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. O. Pichugina and S. Yakovlev, “Continuous approaches to the unconstrained binary quadratic problems,” in: J. Bélair et al. (eds.), Mathematical and Computational Approaches in Advancing Modern Science and Engineering, Springer, Switzerland (2016), pp. 689–700.

    Chapter  Google Scholar 

  22. Yu. G. Stoyan, S. V. Yakovlev, and O. V. Parshin, “Quadratic optimization on combinatorial sets in R n,” Cybern. Syst. Analysis, Vol. 27, No. 4, 562–567 (1991).

    MathSciNet  Google Scholar 

  23. S. V. Yakovlev and I. V. Grebennik, “Localization of solutions of some problems of nonlinear integer optimization,” Cybern. Syst. Analysis, Vol. 29, No. 5, 419–426 (1993).

    MATH  Google Scholar 

  24. S. V. Yakovlev and O. A. Valuiskaya, “Optimization of linear functions at the vertices of a permutation polyhedron with additional linear constraints,” Ukr. Math. J., Vol. 53, No. 9, 1535–1545 (2001).

    Article  Google Scholar 

  25. Yu. G. Stoyan, G. Scheithauer, and G. N. Yaskov, “Packing unequal spheres into various containers,” Cybern. Syst. Analysis, Vol. 52, No. 3, 419–426 (2016).

    Article  MATH  Google Scholar 

  26. Yu. Stoyan and G. Yaskov, “Packing unequal circles into a strip of minimal length with a jump algorithm,” Optimization Letters, Vol. 8, No. 3, 949–970 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  27. G. N. Yaskov, “Packing non-equal hyperspheres into a hypersphere of minimal radius,” Problemy Mashinostroeniya, Vol. 17, No. 2, 48–53 (2014).

    Google Scholar 

  28. S. V. Yakovlev, “On a class of problems on covering of a bounded set,” Acta Mathematica Hungarica, Vol. 53, No. 3, 253–262 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  29. S. N. Gerasin, V. V. Shlyakhov, and S. V. Yakovlev, “Set coverings and tolerance relations,” Cybern. Syst. Analysis, Vol. 44, No. 3, 333–340 (2008),

    Article  MATH  Google Scholar 

  30. S. B. Shekhovtsov and S. V. Yakovlev, “Formalization and solution of one class of covering problem in design of control and monitoring systems,” Autom. Remote Control, Vol. 50, No. 5, 705–710 (1989).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yakovlev.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 5, September–October, 2017, pp. 82–89

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, S.V. The Method of Artificial Space Dilation in Problems of Optimal Packing of Geometric Objects. Cybern Syst Anal 53, 725–731 (2017). https://doi.org/10.1007/s10559-017-9974-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-017-9974-y

Keywords

Navigation