Skip to main content
Log in

Mathematical Model of Interaction of a Symmetric Top with an Axially Symmetric External Field

  • CYBERNETICS
  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

A symmetric top is considered, which is a particular case of a mechanical top that is usually described by the canonical Poisson structure on T*SE (3). This structure is invariant under the right action of the rotation group SO(3), but the Hamiltonian of the symmetric top is invariant only under the right action of the subgroup S 1, which corresponds to the rotation of the symmetric top around its axis of symmetry. This Poisson structure is obtained as the reduction T* SE (3) / S 1. A Hamiltonian and motion equations are proposed that describe a wide class of interaction models of the symmetric top with an axially symmetric external field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Lewis, T. Ratiu, J. C. Ratiu, and J. E. Marsden, “The heavy top: A geometric treatment,” Nonlinearity, Vol. 5, No. 1, 1–48 (1992).

    Article  MathSciNet  Google Scholar 

  2. J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Springer, New York (1999).

    Book  Google Scholar 

  3. S. S. Zub, “Stable orbital motion of magnetic dipole in the field of permanent magnets,” Physica D: Nonlinear Phenomena, Vol. 275, 67–73 (2014).

    Article  MathSciNet  Google Scholar 

  4. H. R. Dullin, “Poisson integrator for symmetric rigid bodies,” Regular and Chaotic Dynamics, Vol. 9, No. 3, 255–264 (2004).

    Article  MathSciNet  Google Scholar 

  5. R. Abraham and J. Marsden, Foundations of Mechanics, American Mathematical Soc., Massachusetts (2002).

    Google Scholar 

  6. S. S. Zub, “Lie group as a configuration space for a simple mechanical system [in Russian],” Journal of Numerical and Applied Mathematics, Vol. 112, No. 2, 89–99 (2013).

    Google Scholar 

  7. S. S. Zub, “The canonical Poisson structure on T * SE (3) and Hamiltonian mechanics of the rigid body: Magnetic dipole dynamics in an external field,” Bulletin of NAS of Ukraine, No. 4, 25–31 (2013).

  8. R. Abraham, J. E. Marsden, and T. S. Ratiu, Manifolds, Tensor Analysis, and Applications, Springer, New York (1988).

    Book  Google Scholar 

  9. J. E. Marsden, G. Misiolek, J.-P. Ortega, M. Perlmutter, and T. S. Ratiu, Hamiltonian Reduction by Stages, Springer, New York (2007).

    MATH  Google Scholar 

  10. R. Zulanke and P. Vintgen, Differential Geometry and Vector Bundles [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  11. J. M. Souriau, Structure of Dynamical Systems, Birkhauser, Boston (1997).

    Book  Google Scholar 

  12. L. Grigoryeva, J.-P. Ortega, and S. S. Zub, “Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies,” The Journal of Geometric Mechanics, Vol. 6, No. 3, 373–415 (2014).

    Article  MathSciNet  Google Scholar 

  13. S. I. Lyashko and V. V. Semenov, “Controllability of linear distributed systems in classes of generalized actions,” Cybernetics and Systems Analysis, Vol. 37, No. 1, 13–32 (2001).

    Article  MathSciNet  Google Scholar 

  14. S. I. Lyashko and D. A. Nomirovskii, “Generalized solutions and optimal controls in systems describing the dynamics of a viscous stratified fluid,” Differential Equations, Vol. 39, No. 1, 90–98 (2003).

    Article  MathSciNet  Google Scholar 

  15. S. I. Lyashko and D. A. Nomirovskii, “The generalized solvability and optimization of parabolic systems in domains with thin low-permeable inclusions,” Cybernetics and Systems Analysis, Vol. 39, No. 5, 737–745 (2003).

    Article  MathSciNet  Google Scholar 

  16. N. I. Lyashko, A. E. Grishchenko, and V. V. Onotskii, “A regularization algorithm for singular controls of parabolic systems” Cybernetics and Systems Analysis, Vol. 42, No. 1, 75–82 (2006).

    Article  MathSciNet  Google Scholar 

  17. D. A. Klyushin, N. I. Lyashko, and Yu. N. Onopchuk, “Mathematical modeling and optimization of intratumoral drug transport,” Cybernetics and Systems Analysis, Vol. 43, No. 6, 886–892 (2007).

    Article  MathSciNet  Google Scholar 

  18. A. A. Chikriy, G. Ts. Chikrii, and K. Yu. Volyanskyi, “Quasilinear positional integral games of approach,” Journal of Automation and Information Sciences, Vol. 33, No. 10, 31–52 (2001).

    Article  Google Scholar 

  19. J.-P. Ortega and T. S. Ratiu, “Non-linear stability of singular relative periodic orbits in Hamiltonian systems with symmetry,” J. Geom. Phys., Vol. 32, No. 2, 160–188 (1999).

    Article  MathSciNet  Google Scholar 

  20. S. S. Zub, “Magnetic levitation in Orbitron system,” Problems of Atomic Science and Technology, Vol. 93, No. 5, 31–34 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Zub.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 3, May–June, 2017, pp. 3–17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zub, S.I., Zub, S.S., Lyashko, V.S. et al. Mathematical Model of Interaction of a Symmetric Top with an Axially Symmetric External Field. Cybern Syst Anal 53, 333–345 (2017). https://doi.org/10.1007/s10559-017-9933-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-017-9933-7

Keywords

Navigation