Skip to main content

Advertisement

Log in

An Extragradient Algorithm for Monotone Variational Inequalities

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

A new iterative algorithm is proposed for solving the variational inequality problem with a monotone and Lipschitz continuous mapping in a Hilbert space. The algorithm is based on the following two well-known methods: the Popov algorithm and so-called subgradient extragradient algorithm. An advantage of the algorithm is the computation of only one value of the inequality mapping and one projection onto the admissible set per one iteration. The weak convergence of sequences generated by the proposed algorithm is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Lions, Certain Methods of Solution of Nonlinear Boundary-Value Problems [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  2. D. Kinderlerer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  3. C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities [Russian translation], Nauka, Moscow (1988).

    Google Scholar 

  4. I. V. Konnov, “On systems of variational inequalities,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 79–88 (1997).

  5. A. Nagurney, Network Economics: A Variational Inequality Approach, Kluwer, Dordrecht (1999).

    Book  Google Scholar 

  6. V. V. Semenov and N. V. Semenova, “A vector problem of optimal control in a Hilbert space,” Cybernetics and Systems Analysis, 41, No. 2, 255–266 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  7. E. G. Golshtein and N. V. Tretyakov, Modified Lagrange Functions: Theory and Optimization Methods [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  8. A. B. Bakushinskii and A. V. Goncharskii, Ill-Posed Problems: Numerical Methods and Applications [in Russian], Mosk. Gos. Univ., Moscow (1989).

    Google Scholar 

  9. I. V. Konnov, Combined Relaxation Methods for Variational Inequalities, Springer, Berlin-Heidelberg–New York (2001).

    Book  MATH  Google Scholar 

  10. F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problem, Vol. 2, Springer, New York (2003).

    Google Scholar 

  11. V. V. Vasin and I. I. Eremin, Operators and Iterative Fejer Processes: Theory and Applications [in Russian], Regular and Chaotic Dynamics, Moscow–Izhevsk (2005).

    Google Scholar 

  12. B. N. Pshenichnyi and M. U. Kalzhanov, “A method for solving variational inequalities,” Cybernetics and Systems Analysis, 28, No. 6, 846–853 (1992).

    Article  MathSciNet  Google Scholar 

  13. V. V. Kalashnikov and N. I. Kalashnikova, “Solution of two-level variational inequality,” Cybernetics and Systems Analysis, 30, No. 4, 623–625 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. V. M. Panin, V. V. Skopetskii, and T. V. Lavrina, “Models and methods of finite-dimensional variational inequalities,” Cybernetics and Systems Analysis, 36, No. 6, 47–64 (2000).

    Article  MathSciNet  Google Scholar 

  15. N. Xiu and J. Zhang, “Some recent advances in projection-type methods for variational inequalities,” J. Comput. Appl. Math., 152, 559–585 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  16. N. Nadezhkina and W. Takahashi, “Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings,” SIAM J. Optim., 16, No. 4, 1230–1241 2006.

    Article  MATH  MathSciNet  Google Scholar 

  17. Nadezhkina and W. Takahashi, “Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings,” J. Optim. Theory and Appl., 128, 191–201 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  18. E. A. Nurminskii, “The use of additional diminishing disturbances in Fejer models of iterative algorithms,” Zh. Vychisl. Mat. Mat. Fiziki, 48, No. 12, 2121–2128 (2008).

    MathSciNet  Google Scholar 

  19. V. V. Semenov, “On the parallel proximal decomposition method for solving problems of convex optimization,” Journal of Automation and Information Sciences, No. 2, 42–46 (2010).

    Google Scholar 

  20. Yu. V. Malitsky and V. V. Semenov, “New theorems on the strong convergence of the proximal method for the problem of equilibrium programming,” Zh. Obchisl. Prykl. Mat., No. 3 (102), 79–88 (2010).

  21. V. V. Semenov, “On the convergence of methods for solving two-level variational inequalities with monotone mappings,” Zh. Obchisl. Prykl. Mat., No. 2 (101), 120–128 (2010).

  22. S. V. Denisov and V. V. Semenov, “A proximal algorithm for two-level variational inequalities: Strong convergence,” Zh. Obchisl. Prykl. Mat., No. 3 (106), 27–32 (2011).

  23. V. V. Semenov, “Parallel decomposition of variational inequalities with monotone mappings,” Zh. Obchisl. Prykl. Mat., No. 2 (108), 53–58 (2012).

  24. A. S. Antipin, “On a convex programming method using a symmetrical modification of the Lagrange function,” Ekonomika i Mat. Metody, 12, No. 6, 1164–1173 (1976).

    MATH  Google Scholar 

  25. G. M. Korpelevich, “An extragradient method for finding saddle points and for other problems,” Ekonomika i Mat. Metody, 12, No. 4, 747–756 (1976).

    MATH  MathSciNet  Google Scholar 

  26. E. N. Hobotov, “On a modification of the extragradient method for solving variational inequalities and some optimization problems,” Zh. Vychisl. Mat. Mat. Fiz., 27, No. 10, 1462–1473 (1987).

    Google Scholar 

  27. A. V. Zykina and N. V. Melen’chuk, “A two-step extragradient method for variational inequalities,” Izv. Vyssh. Uchebn. Zaved., Mat., 9, 82–85 (2010).

    MathSciNet  Google Scholar 

  28. D. N. Zaporozhets, A. V. Zykina, and N. V. Melen’chuk, “Comparative analysis of extragradient methods for solving variational inequalities for some problems,” Automatics and Telemechanics, No. 4, 32–46 (2012).

    Google Scholar 

  29. T. A. Voitova, S. V. Denisov, and V. V. Semenov, “A strongly convergent modified version of the Korpelevich method for equilibrium programming problems,” Zh. Obchisl. Prykl. Mat., No. 1 (104), 10–23 (2011).

  30. R. Ya. Apostol, A. A. Grinenko, and V. V. Semenov, “Iterative algorithms for monotone two-level variational inequalities,” Zh. Obchisl. Prykl. Mat., No. 1 (107) 3–14 (2012).

  31. L. D. Popov, “A modification of the Arrow-Hurwicz method for searching for saddle points,” Mat. Zametki, 28, No. 5, 777–784 (1980).

    MATH  MathSciNet  Google Scholar 

  32. Y. Censor, A. Gibali, and S. Reich, “The subgradient extragradient method for solving variational inequalities in Hilbert space,” J. Optim. Theory and Appl., 148, 318–335 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  33. S. I. Lyashko, V. V. Semenov, and T. A. Voitova, “Low-cost modification of Korpelevich’s methods for monotone equilibrium problems,” Cybernetics and Systems Analysis, 47, No. 4, 631–640 (2011).

    Article  Google Scholar 

  34. H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, Berlin–Heidelberg–New York (2011).

    Book  MATH  Google Scholar 

  35. Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” Bull. Amer. Math. Soc., 73, 591–597 (1967).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Malitsky.

Additional information

This work was financed by the Verkhovna Rada of Ukraine (the nominal grant of the Verkhovna Rada of Ukraine for 2013 to support scientific researches of young scientists) and the State Fund for Fundamental Researches of Ukraine (project GP/F49/061).

Translated from Kibernetika i Sistemnyi Analiz, No. 2, pp. 125–131, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malitsky, Y.V., Semenov, V.V. An Extragradient Algorithm for Monotone Variational Inequalities. Cybern Syst Anal 50, 271–277 (2014). https://doi.org/10.1007/s10559-014-9614-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-014-9614-8

Keywords

Navigation