Skip to main content
Log in

Experimental Animal Models Evaluating the Causal Role of Lipoprotein(a) in Atherosclerosis and Aortic Stenosis

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Lipoprotein(a) [Lp(a)], comprised of apolipoprotein(a) [apo(a)] and a low-density lipoprotein-like particle, is a genetically determined, causal risk factor for cardiovascular disease and calcific aortic valve stenosis. Lp(a) is the major plasma lipoprotein carrier of oxidized phospholipids, is pro-inflammatory, inhibits plasminogen activation, and promotes smooth muscle cell proliferation, as defined mostly through in vitro studies. Although Lp(a) is not expressed in commonly studied laboratory animals, mouse and rabbit models transgenic for Lp(a) and apo(a) have been developed to address their pathogenicity in vivo. These models have provided significant insights into the pathophysiology of Lp(a), particularly in understanding the mechanisms of Lp(a) in mediating atherosclerosis. Studies in Lp(a)-transgenic mouse models have demonstrated that apo(a) is retained in atheromas and suggest that it promotes fatty streak formation. Furthermore, rabbit models have shown that Lp(a) promotes atherosclerosis and vascular calcification. However, many of these models have limitations. Mouse models need to be transgenic for both apo(a) and human apolipoprotein B-100 since apo(a) does not covalently associated with mouse apoB to form Lp(a). In established mouse and rabbit models of atherosclerosis, Lp(a) levels are low, generally <20 mg/dL, which is considered to be within the normal range in humans. Furthermore, only one apo(a) isoform can be expressed in a given model whereas over 40 isoforms exist in humans. Mouse models should also ideally be studied in an LDL receptor negative background for atherosclerosis studies, as mice don’t develop sufficiently elevated plasma cholesterol to study atherosclerosis in detail. With recent data that cardiovascular disease and calcific aortic valve stenosis is causally mediated by the LPA gene, development of optimized Lp(a)-transgenic animal models will provide an opportunity to further understand the mechanistic role of Lp(a) in atherosclerosis and aortic stenosis and provide a platform to test novel therapies for cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berg K. A New serum type system in man--the Lp system. Acta Pathol Microbiol Scand. 1963;59:369–82.

    Article  CAS  PubMed  Google Scholar 

  2. Boerwinkle E, Leffert CC, Lin J, Lackner C, Chiesa G, Hobbs HH. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest. 1992;90:52–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361:2518–28.

    Article  CAS  PubMed  Google Scholar 

  4. Luke MM, Kane JP, Liu DM, et al. A polymorphism in the protease-like domain of apolipoprotein(a) is associated with severe coronary artery disease. Arterioscler Thromb Vasc Biol. 2007;27:2030–6.

    Article  CAS  PubMed  Google Scholar 

  5. Chasman DI, Shiffman D, Zee RY, et al. Polymorphism in the apolipoprotein(a) gene, plasma lipoprotein(a), cardiovascular disease, and low-dose aspirin therapy. Atherosclerosis. 2009;203:371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deo RC, Wilson JG, Xing C, et al. Single-nucleotide polymorphisms in LPA explain most of the ancestry-specific variation in Lp(a) levels in African Americans. PLoS One. 2011;6:e14581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsimikas S, Clopton P, Brilakis ES, et al. Relationship of oxidized phospholipids on apolipoprotein B-100 particles to race/ethnicity, apolipoprotein(a) isoform size, and cardiovascular risk factors: results from the Dallas heart study. Circulation. 2009;119:1711–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Willeit P, Kiechl S, Kronenberg F, et al. Discrimination and net reclassification of cardiovascular risk with lipoprotein(a): prospective 15-year outcomes in the Bruneck study. J Am Coll Cardiol. 2014;64:851–60.

    Article  PubMed  Google Scholar 

  9. Tsimikas S, Mallat Z, Talmud PJ, et al. Oxidation-specific biomarkers, lipoprotein(a), and risk of fatal and nonfatal coronary events. J Am Coll Cardiol. 2010;56:946–55.

    Article  CAS  PubMed  Google Scholar 

  10. Capoulade R, Chan KL, Yeang C, et al. Oxidized phospholipids, lipoprotein(a), and progression of calcific aortic valve stenosis. J Am Coll Cardiol. 2015;66:1236–46.

    Article  CAS  PubMed  Google Scholar 

  11. Tregouet DA, Konig IR, Erdmann J, et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet. 2009;41:283–5.

    Article  CAS  PubMed  Google Scholar 

  12. Schunkert H, Konig IR, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43:333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Consortium CAD, Deloukas P, Kanoni S, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25–33.

    Google Scholar 

  14. Greif M, Arnoldt T, von Ziegler F, et al. Lipoprotein (a) is independently correlated with coronary artery calcification. Eur J Intern Med. 2013;24:75–9.

    Article  CAS  PubMed  Google Scholar 

  15. Thanassoulis G, Campbell CY, Owens DS, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368:503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guerra R, Yu Z, Marcovina S, Peshock R, Cohen JC, Hobbs HH. Lipoprotein(a) and apolipoprotein(a) isoforms: no association with coronary artery calcification in the Dallas heart study. Circulation. 2005;111:1471–9.

    Article  CAS  PubMed  Google Scholar 

  17. Nishino M, Malloy MJ, Naya-Vigne J, Russell J, Kane JP, Redberg RF. Lack of association of lipoprotein(a) levels with coronary calcium deposits in asymptomatic postmenopausal women. J Am Coll Cardiol. 2000;35:314–20.

    Article  CAS  PubMed  Google Scholar 

  18. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301:2331–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG. Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population. J Am Coll Cardiol. 2014;63:470–7.

    Article  CAS  PubMed  Google Scholar 

  20. Arsenault BJ, Boekholdt SM, Dube MP, et al. Lipoprotein(a) levels, genotype, and incident aortic valve stenosis: a prospective mendelian randomization study and replication in a case–control cohort. Circ Cardiovasc Genet. 2014;7:304–10.

    Article  CAS  PubMed  Google Scholar 

  21. McLean JW, Tomlinson JE, Kuang WJ, et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature. 1987;330:132–7.

    Article  CAS  PubMed  Google Scholar 

  22. Lawn RM, Schwartz K, Patthy L. Convergent evolution of apolipoprotein(a) in primates and hedgehog. Proc Natl Acad Sci. 1997;94:11992–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gabel BR, Koschinsky MI. Analysis of the proteolytic activity of a recombinant form of apolipoprotein(a). Biochemistry. 1995;34:15777–84.

    Article  CAS  PubMed  Google Scholar 

  24. Becker L, Cook PM, Wright TG, Koschinsky ML. Quantitative evaluation of the contribution of weak lysine-binding sites present within apolipoprotein(a) kringle IV types 6–8 to lipoprotein(a) assembly. J Biol Chem. 2004;279:2679–88.

    Article  CAS  PubMed  Google Scholar 

  25. Callow MJ, Rubin EM. Site-specific mutagenesis demonstrates that cysteine 4326 of apolipoprotein B is required for covalent linkage with apolipoprotein (a) in vivo. J Biol Chem. 1995;270:23914–7.

    Article  CAS  PubMed  Google Scholar 

  26. Guevara Jr J, Jan AY, Knapp R, Tulinsky A, Morrisett JD. Comparison of ligand-binding sites of modeled apo[a] kringle-like sequences in human lipoprotein[a]. Arterioscler Thromb. 1993;13:758–70.

    Article  CAS  PubMed  Google Scholar 

  27. Loscalzo J, Weinfeld M, Fless GM, Scanu AM. Lipoprotein(a), fibrin binding, and plasminogen activation. Arterioscler Thromb Vasc Biol. 1990;10:240–5.

    Article  CAS  Google Scholar 

  28. Hajjar KA, Gavish D, Breslow JL, Nachman RL. Lipoprotein(a) modulation of endothelial cell surface fibrinolysis and its potential role in atherosclerosis. Nature. 1989;339:303–5.

    Article  CAS  PubMed  Google Scholar 

  29. Hancock MA, Boffa MB, Marcovina SM, Nesheim ME, Koschinsky ML. Inhibition of plasminogen activation by lipoprotein(a): critical domains in apolipoprotein(a) and mechanism of inhibition on fibrin and degraded fibrin surfaces. J Biol Chem. 2003;278:23260–9.

    Article  CAS  PubMed  Google Scholar 

  30. Miller YI, Choi S-H, Wiesner P, et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res. 2011;108:235–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Witztum JL, Lichtman AH. The influence of innate and adaptive immune responses on atherosclerosis. Annu Rev Pathol. 2014;9:73–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kiechl S, Willeit J, Mayr M, et al. Oxidized phospholipids, lipoprotein(a), lipoprotein-associated phospholipase A2 activity, and 10-year cardiovascular outcomes: prospective results from the Bruneck study. Arterioscler Thromb Vasc Biol. 2007;27:1788–95.

    Article  CAS  PubMed  Google Scholar 

  33. Tsimikas S, Willeit P, Willeit J, et al. Oxidation-specific biomarkers, prospective 15-year cardiovascular and stroke outcomes, and net reclassification of cardiovascular events. J Am Coll Cardiol. 2012;60:2218–29.

    Article  CAS  PubMed  Google Scholar 

  34. Tsimikas S, Duff GW, Berger PB, et al. Pro-inflammatory interleukin-1 genotypes potentiate the risk of coronary artery disease and cardiovascular events mediated by oxidized phospholipids and lipoprotein(a). J Am Coll Cardiol. 2014;63:1724–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Byun YS, Lee JH, Arsenault BJ, et al. Relationship of oxidized phospholipids on apolipoprotein B-100 to cardiovascular outcomes in patients treated with intensive versus moderate atorvastatin therapy: the TNT trial. J Am Coll Cardiol. 2015;65:1286–95.

    Article  CAS  PubMed  Google Scholar 

  36. Ahmadi N, Tsimikas S, Hajsadeghi F, et al. Relation of oxidative biomarkers, vascular dysfunction, and progression of coronary artery calcium. Am J Cardiol. 2010;105:459–66.

    Article  CAS  PubMed  Google Scholar 

  37. Budoff MJ, Ahmadi N, Gul KM, et al. Aged garlic extract supplemented with B vitamins, folic acid and L-arginine retards the progression of subclinical atherosclerosis: a randomized clinical trial. Prev Med. 2009;49:101–7.

    Article  CAS  PubMed  Google Scholar 

  38. Tsimikas S, Kiechl S, Willeit J, et al. Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease: five-year prospective results from the Bruneck study. J Am Coll Cardiol. 2006;47:2219–28.

    Article  CAS  PubMed  Google Scholar 

  39. Tsimikas S, Brilakis ES, Miller ER, et al. Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med. 2005;353:46–57.

    Article  CAS  PubMed  Google Scholar 

  40. Tsimikas S, Bergmark C, Beyer RW, et al. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J Am Coll Cardiol. 2003;41:360–70.

    Article  CAS  PubMed  Google Scholar 

  41. Tsimikas S, Lau HK, Han KR, et al. Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a): short-term and long-term immunologic responses to oxidized low-density lipoprotein. Circulation. 2004;109:3164–70.

    Article  CAS  PubMed  Google Scholar 

  42. Arai K, Orsoni A, Mallat Z, et al. Acute impact of apheresis on oxidized phospholipids in patients with familial hypercholesterolemia. J Lipid Res. 2012;53:1670–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yoshida H, Shoda T, Yanai H, et al. Effects of pitavastatin and atorvastatin on lipoprotein oxidation biomarkers in patients with dyslipidemia. Atherosclerosis. 2013;226:161–4.

    Article  CAS  PubMed  Google Scholar 

  44. Bergmark C, Dewan A, Orsoni A, et al. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J Lipid Res. 2008;49:2230–9.

    Article  CAS  PubMed  Google Scholar 

  45. Edelstein C, Pfaffinger D, Yang M, Hill JS, Scanu AM. Naturally occurring human plasminogen, like genetically related apolipoprotein(a), contains oxidized phosphatidylcholine adducts. Biochim Biophys Acta. 1801;2010:738–45.

    Google Scholar 

  46. Leibundgut G, Arai K, Orsoni A, et al. Oxidized phospholipids are present on plasminogen, affect fibrinolysis, and increase following acute myocardial infarction. J Am Coll Cardiol. 2012;59:1426–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Libby P. Counterregulation rules in atherothrombosis. J Am Coll Cardiol. 2012;59:1438–40.

    Article  PubMed  Google Scholar 

  48. Rao F, Schork AJ, Maihofer AX, et al. Heritability of biomarkers of oxidized lipoproteins: twin pair study. Arterioscler Thromb Vasc Biol. 2015;35:1704–11.

    Article  CAS  PubMed  Google Scholar 

  49. Arai K, Luke MM, Koschinsky ML, et al. The I4399M variant of apolipoprotein(a) is associated with increased oxidized phospholipids on apolipoprotein B-100 particles. Atherosclerosis. 2010;209:498–503.

    Article  CAS  PubMed  Google Scholar 

  50. Ky B, Burke A, Tsimikas S, et al. The influence of pravastatin and atorvastatin on markers of oxidative stress in hypercholesterolemic humans. J Am Coll Cardiol. 2008;51:1653–62.

    Article  CAS  PubMed  Google Scholar 

  51. Choi SH, Chae A, Miller E, et al. Relationship between biomarkers of oxidized low-density lipoprotein, statin therapy, quantitative coronary angiography, and atheroma: volume observations from the REVERSAL (Reversal of Atherosclerosis with Aggressive Lipid Lowering) study. J Am Coll Cardiol. 2008;52:24–32.

    Article  CAS  PubMed  Google Scholar 

  52. Rodenburg J, Vissers MN, Wiegman A, et al. Oxidized low-density lipoprotein in children with familial hypercholesterolemia and unaffected siblings: effect of pravastatin. J Am Coll Cardiol. 2006;47:1803–10.

    Article  CAS  PubMed  Google Scholar 

  53. Tsimikas S, Witztum JL, Miller ER, et al. High-dose atorvastatin reduces total plasma levels of oxidized phospholipids and immune complexes present on apolipoprotein B-100 in patients with acute coronary syndromes in the MIRACL trial. Circulation. 2004;110:1406–12.

    Article  CAS  PubMed  Google Scholar 

  54. Faghihnia N, Tsimikas S, Miller ER, Witztum JL, Krauss RM. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet. J Lipid Res. 2010;51:3324–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Silaste ML, Rantala M, Alfthan G, et al. Changes in dietary fat intake alter plasma levels of oxidized low-density lipoprotein and lipoprotein(a). Arterioscler Thromb Vasc Biol. 2004;24:498–503.

    Article  CAS  PubMed  Google Scholar 

  56. Tsimikas S, Viney NJ, Hughes SG et al. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 2015;386:1472–83.

  57. van Dijk RA, Kolodgie F, Ravandi A, et al. Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. J Lipid Res. 2012;53:2773–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Rath M, Niendorf A, Reblin T, Dietel M, Krebber HJ, Beisiegel U. Detection and quantification of lipoprotein(a) in the arterial wall of 107 coronary bypass patients. Arteriosclerosis. 1989;9:579–92.

    Article  CAS  PubMed  Google Scholar 

  59. Cushing GL, Gaubatz JW, Nava ML, et al. Quantitation and localization of apolipoproteins [a] and B in coronary artery bypass vein grafts resected at re-operation. Arteriosclerosis. 1989;9:593–603.

    Article  CAS  PubMed  Google Scholar 

  60. Olsson M, Thyberg J, Nilsson J. Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler Thromb Vasc Biol. 1999;19:1218–22.

    Article  CAS  PubMed  Google Scholar 

  61. Ridker PM. LDL cholesterol: controversies and future therapeutic directions. Lancet. 2014;384:607–17.

    Article  CAS  PubMed  Google Scholar 

  62. Sniderman AD, Williams K, Contois JH, et al. A meta-analysis of Low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes. 2011;4:337–45.

    Article  PubMed  Google Scholar 

  63. Syrovets T, Thillet J, Chapman MJ, Simmet T. Lipoprotein(a) is a potent chemoattractant for human peripheral monocytes. Blood. 1997;90:2027–36.

    CAS  PubMed  Google Scholar 

  64. Poon M, Zhang X, Dunsky KG, Taubman MB, Harpel PC. Apolipoprotein(a) induces monocyte chemotactic activity in human vascular endothelial cells. Circulation. 1997;96:2514–9.

    Article  CAS  PubMed  Google Scholar 

  65. Wiesner P, Tafelmeier M, Chittka D, et al. MCP-1 binds to oxidized LDL and is carried by lipoprotein(a) in human plasma. J Lipid Res. 2013;54:1877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seimon TA, Nadolski MJ, Liao X, et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 2010;12:467–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Klezovitch O, Edelstein C, Scanu AM. Stimulation of interleukin-8 production in human THP-1 macrophages by apolipoprotein(a). Evidence for a critical involvement of elements in its C-terminal domain. J Biol Chem. 2001;276:46864–9.

    Article  CAS  PubMed  Google Scholar 

  68. Grainger DJ, Kirschenlohr HL, Metcalfe JC, Weissberg PL, Wade DP, Lawn RM. Proliferation of human smooth muscle cells promoted by lipoprotein(a). Science. 1993;260:1655–8.

    Article  CAS  PubMed  Google Scholar 

  69. Sangrar W, Bajzar L, Nesheim ME, Koschinsky ML. Antifibrinolytic effect of recombinant apolipoprotein(a) in vitro is primarily due to attenuation of tPA-mediated Glu-plasminogen activation. Biochemistry. 1995;34:5151–7.

    Article  CAS  PubMed  Google Scholar 

  70. Boffa MB, Koschinsky ML. Update on lipoprotein(a) as a cardiovascular risk factor and mediator. Curr Atheroscler Rep. 2013;15:360.

    Article  PubMed  CAS  Google Scholar 

  71. Tsimikas S, Hall JL. Lipoprotein(a) as a potential causal genetic risk factor of cardiovascular disease a rationale for increased efforts to understand its pathophysiology and develop targeted therapies. J Am Coll Cardiol. 2012;60:716–21.

    Article  CAS  PubMed  Google Scholar 

  72. Schneider M, Witztum JL, Young SG, et al. High-level lipoprotein [a] expression in transgenic mice: evidence for oxidized phospholipids in lipoprotein [a] but not in low density lipoproteins. J Lipid Res. 2005;46:769–78.

    Article  CAS  PubMed  Google Scholar 

  73. Cheesman EJ, Sharp RJ, Zlot CH, et al. An analysis of the interaction between mouse apolipoprotein B100 and apolipoprotein(a). J Biol Chem. 2000;275:28195–200.

    CAS  PubMed  Google Scholar 

  74. Merki E, Graham M, Taleb A, et al. Antisense oligonucleotide lowers plasma levels of apolipoprotein (a) and lipoprotein (a) in transgenic mice. J Am Coll Cardiol. 2011;57:1611–21.

    Article  CAS  PubMed  Google Scholar 

  75. Leibundgut G, Scipione C, Yin H, et al. Determinants of binding of oxidized phospholipids on apolipoprotein(a) and lipoprotein(a). J Lipid Res. 2013;54:2815–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Edelstein C, Pfaffinger D, Hinman J, et al. Lysine-phosphatidylcholine adducts in kringle V impart unique immunological and potential pro-inflammatory properties to human apolipoprotein(a). J Biol Chem. 2003;278:52841–7.

    Article  CAS  PubMed  Google Scholar 

  77. Lawn RM, Wade DP, Hammer RE, Chiesa G, Verstuyft JG, Rubin EM. Atherogenesis in transgenic mice expressing human apolipoprotein(a). Nature. 1992;360:670–2.

    Article  CAS  PubMed  Google Scholar 

  78. Merki E, Graham MJ, Mullick AE, et al. Antisense oligonucleotide directed to human apolipoprotein B-100 reduces lipoprotein(a) levels and oxidized phospholipids on human apolipoprotein B-100 particles in lipoprotein(a) transgenic mice. Circulation. 2008;118:743–53.

    Article  CAS  PubMed  Google Scholar 

  79. Liu AC, Lawn RM, Verstuyft JG, Rubin EM. Human apolipoprotein A-I prevents atherosclerosis associated with apolipoprotein[a] in transgenic mice. J Lipid Res. 1994;35:2263–7.

    CAS  PubMed  Google Scholar 

  80. Callow MJ, Verstuyft J, Tangirala R, Palinski W, Rubin EM. Atherogenesis in transgenic mice with human apolipoprotein B and lipoprotein (a). J Clin Investig. 1995;96:1639–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Berg K, Svindland A, Smith AJ, et al. Spontaneous atherosclerosis in the proximal aorta of LPA transgenic mice on a normal diet. Atherosclerosis. 2002;163:99–104.

    Article  CAS  PubMed  Google Scholar 

  82. Mancini FP, Newland DL, Mooser V, et al. Relative contributions of apolipoprotein(a) and apolipoprotein-B to the development of fatty lesions in the proximal aorta of mice. Arterioscler Thromb Vasc Biol. 1995;15:1911–6.

    Article  CAS  PubMed  Google Scholar 

  83. Boonmark NW, Lou XJ, Yang ZJ, et al. Modification of apolipoprotein(a) lysine binding site reduces atherosclerosis in transgenic mice. J Clin Invest. 1997;100:558–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lou XJ, Boonmark NW, Horrigan FT, Degen JL, Lawn RM. Fibrinogen deficiency reduces vascular accumulation of apolipoprotein(a) and development of atherosclerosis in apolipoprotein(a) transgenic mice. Proc Natl Acad Sci U S A. 1998;95:12591–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hughes SD, Lou XJ, Ighani S, et al. Lipoprotein(a) vascular accumulation in mice. In vivo analysis of the role of lysine binding sites using recombinant adenovirus. J Clin Invest. 1997;100:1493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sanan DA, Newland DL, Tao R, et al. Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a). Proc Natl Acad Sci U S A. 1998;95:4544–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Teivainen PA, Eliassen KA, Berg K, Torsdalen K, Svindland A. Atherogenesis and vascular calcification in mice expressing the human LPA gene. Pathophysiology. 2004;11:113–20.

    Article  CAS  PubMed  Google Scholar 

  88. Kronenberg F, Utermann G, Dieplinger H. Lipoprotein(a) in renal disease. Am J Kidney Dis. 1996;27:1–25.

    Article  CAS  PubMed  Google Scholar 

  89. Pedersen TX, McCormick SP, Tsimikas S, Bro S, Nielsen LB. Lipoprotein(a) accelerates atherosclerosis in uremic mice. J Lipid Res. 2010;51:2967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wanner C, Krane V, Marz W, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353:238–48.

    Article  CAS  PubMed  Google Scholar 

  91. Fellstrom BC, Jardine AG, Schmieder RE, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med. 2009;360:1395–407.

    Article  CAS  PubMed  Google Scholar 

  92. Nordestgaard BG, Chapman MJ, Ray K, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31:2844–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Berg K, Dahlen G, Christophersen B, Cook T, Kjekshus J, Pedersen T. Lp(a) lipoprotein level predicts survival and major coronary events in the Scandinavian simvastatin survival study. Clin Genet. 1997;52:254–61.

    Article  CAS  PubMed  Google Scholar 

  94. Rader DJ, Cain W, Ikewaki K, et al. The inverse association of plasma lipoprotein(a) concentrations with apolipoprotein(a) isoform size is not due to differences in Lp(a) catabolism but to differences in production rate. J Clin Invest. 1994;93:2758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chiesa G, Hobbs HH, Koschinsky ML, Lawn RM, Maika SD, Hammer RE. Reconstitution of lipoprotein(a) by infusion of human low density lipoprotein into transgenic mice expressing human apolipoprotein(a). J Biol Chem. 1992;267:24369–74.

    CAS  PubMed  Google Scholar 

  96. Rouy D, Duverger N, Lin SD, et al. Apolipoprotein(a) yeast artificial chromosome transgenic rabbits. Lipoprotein(a) assembly with human and rabbit apolipoprotein B. J Biol Chem. 1998;273:1247–51.

    Article  CAS  PubMed  Google Scholar 

  97. Sun H, Unoki H, Wang X, et al. Lipoprotein(a) enhances advanced atherosclerosis and vascular calcification in WHHL transgenic rabbits expressing human apolipoprotein(a). J Biol Chem. 2002;277:47486–92.

    Article  CAS  PubMed  Google Scholar 

  98. Fan J, Araki M, Wu L, et al. Assembly of lipoprotein (a) in transgenic rabbits expressing human apolipoprotein (a). Biochem Biophys Res Commun. 1999;255:639–44.

    Article  CAS  PubMed  Google Scholar 

  99. Fan J, Challah M, Shimoyamada H, Watanabe T. Transgenic rabbits expressing human apolipoprotein(a) as a useful model for the study of lipoprotein(a). Ann N Y Acad Sci. 2000;902:347–51.

    Article  CAS  PubMed  Google Scholar 

  100. Getz GS, Reardon CA. Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:1104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fan J, Shimoyamada H, Sun H, Marcovina S, Honda K, Watanabe T. Transgenic rabbits expressing human apolipoprotein(a) develop more extensive atherosclerotic lesions in response to a cholesterol-rich diet. Arterioscler Thromb Vasc Biol. 2001;21:88–94.

    Article  CAS  PubMed  Google Scholar 

  102. Grainger DJ, Kemp PR, Liu AC, Lawn RM, Metcalfe JC. Activation of transforming growth factor-beta is inhibited in transgenic apolipoprotein(a) mice. Nature. 1994;370:460–2.

    Article  CAS  PubMed  Google Scholar 

  103. Kitajima S, Jin Y, Koike T, et al. Lp(a) enhances coronary atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits. Atherosclerosis. 2007;193:269–76.

    Article  CAS  PubMed  Google Scholar 

  104. Horkko S, Bird DA, Miller E, et al. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest. 1999;103:117–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Qasim AN, Martin SS, Mehta NN, et al. Lipoprotein(a) is strongly associated with coronary artery calcification in type-2 diabetic women. Int J Cardiol. 2011;150:17–21.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Osnabrugge RL, Mylotte D, Head SJ, et al. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J Am Coll Cardiol. 2013;62:1002–12.

    Article  PubMed  Google Scholar 

  107. Otto CM, Prendergast B. Aortic-valve stenosis--from patients at risk to severe valve obstruction. N Engl J Med. 2014;371:744–56.

    Article  CAS  PubMed  Google Scholar 

  108. Pawade TA, Newby DE, Dweck MR. Calcification in aortic stenosis the skeleton key. J Am Coll Cardiol. 2015;66:561–77.

    Article  PubMed  Google Scholar 

  109. Dweck MR, Boon NA, Newby DE. Calcific aortic stenosis: a disease of the valve and the myocardium. J Am Coll Cardiol. 2012;60:1854–63.

    Article  PubMed  Google Scholar 

  110. O’Brien KD, Reichenbach DD, Marcovina SM, Kuusisto J, Alpers CE, Otto CM. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler Thromb Vasc Biol. 1996;16:523–32.

    Article  PubMed  Google Scholar 

  111. Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O’Brien KD. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 1994;90:844–53.

    Article  CAS  PubMed  Google Scholar 

  112. Mody N, Parhami F, Sarafian TA, Demer LL. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med. 2001;31:509–19.

    Article  CAS  PubMed  Google Scholar 

  113. Maziere C, Louvet L, Gomila C, Kamel S, Massy Z, Maziere JC. Oxidized low density lipoprotein decreases Rankl-induced differentiation of osteoclasts by inhibition of Rankl signaling. J Cell Physiol. 2009;221:572–8.

    Article  CAS  PubMed  Google Scholar 

  114. Derwall M, Malhotra R, Lai CS, et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:613–22.

    Article  CAS  PubMed  Google Scholar 

  115. Cola C, Almeida M, Li D, Romeo F, Mehta JL. Regulatory role of endothelium in the expression of genes affecting arterial calcification. Biochem Biophys Res Commun. 2004;320:424–7.

    Article  CAS  PubMed  Google Scholar 

  116. Su X, Ao L, Shi Y, Johnson TR, Fullerton DA, Meng X. Oxidized low density lipoprotein induces bone morphogenetic protein-2 in coronary artery endothelial cells via Toll-like receptors 2 and 4. J Biol Chem. 2011;286:12213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nadlonek NA, Lee JH, Weyant MJ, Meng X, Fullerton DA. ox-LDL induces PiT-1 expression in human aortic valve interstitial cells. J Surg Res. 2013;184:6–9.

    Article  CAS  PubMed  Google Scholar 

  118. Goettsch C, Rauner M, Hamann C, et al. Nuclear factor of activated T cells mediates oxidised LDL-induced calcification of vascular smooth muscle cells. Diabetologia. 2011;54:2690–701.

    Article  CAS  PubMed  Google Scholar 

  119. Liao L, Zhou Q, Song Y, et al. Ceramide mediates Ox-LDL-induced human vascular smooth muscle cell calcification via p38 mitogen-activated protein kinase signaling. PLoS One. 2013;8:e82379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Syvaranta S, Alanne-Kinnunen M, Oorni K, et al. Potential pathological roles for oxidized low-density lipoprotein and scavenger receptors SR-AI, CD36, and LOX-1 in aortic valve stenosis. Atherosclerosis. 2014;235:398–407.

    Article  CAS  PubMed  Google Scholar 

  121. Bennett BJ, Scatena M, Kirk EA, et al. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE−/− mice. Arterioscler Thromb Vasc Biol. 2006;26:2117–24.

    Article  CAS  PubMed  Google Scholar 

  122. Morony S, Tintut Y, Zhang Z, et al. Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(−/−) mice. Circulation. 2008;117:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Parhami F, Morrow AD, Balucan J, et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol. 1997;17:680–7.

    Article  CAS  PubMed  Google Scholar 

  124. Yan J, Stringer SE, Hamilton A, et al. Decorin GAG synthesis and TGF-beta signaling mediate Ox-LDL-induced mineralization of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2011;31:608–15.

    Article  CAS  PubMed  Google Scholar 

  125. Palinski W, Yla-Herttuala S, Rosenfeld ME, et al. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis. 1990;10:325–35.

    Article  CAS  PubMed  Google Scholar 

  126. Tintut Y, Patel J, Territo M, Saini T, Parhami F, Demer LL. Monocyte/macrophage regulation of vascular calcification in vitro. Circulation. 2002;105:650–5.

    Article  CAS  PubMed  Google Scholar 

  127. Miller JD, Weiss RM, Heistad DD. Calcific aortic valve stenosis: methods, models, and mechanisms. Circ Res. 2011;108:1392–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Miller JD, Weiss RM, Serrano KM, et al. Lowering plasma cholesterol levels halts progression of aortic valve disease in mice. Circulation. 2009;119:2693–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Feric NT, Boffa MB, Johnston SM, Koschinsky ML. Apolipoprotein(a) inhibits the conversion of Glu-plasminogen to Lys-plasminogen: a novel mechanism for lipoprotein(a)-mediated inhibition of plasminogen activation. J Thromb Haemost. 2008;6:2113–20.

    Article  CAS  PubMed  Google Scholar 

  130. Sangrar W, Koschinsky ML. Characterization of the interaction of recombinant apolipoprotein(a) with modified fibrinogen surfaces and fibrin clots. Biochem Cell Biol. 2000;78:519–25.

    Article  CAS  PubMed  Google Scholar 

  131. Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol. 2014;11:379–89.

    Article  PubMed  Google Scholar 

  132. Konig A, Margolis MP, Virmani R, Holmes D, Klauss V. Technology insight: in vivo coronary plaque classification by intravascular ultrasonography radiofrequency analysis. Nat Clin Pract Cardiovasc Med. 2008;5:219–29.

    Article  PubMed  Google Scholar 

  133. Tops LF, Wood DA, Delgado V, et al. Noninvasive evaluation of the aortic root with multislice computed tomography implications for transcatheter aortic valve replacement. J Am Coll Cardiol Img. 2008;1:321–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Tsimikas.

Ethics declarations

Sources of Funding

NIH R01-HL119828, P01-HL088093, P01 HL055798, R01-HL106579, R01-HL078610, R01-HL124174.

Disclosures

Dr. Tsimikas is a co-inventor of and receive royalties from patents owned by the University of California San Diego on oxidation-specific antibodies. Dr. Tsimikas has a dual appointment at UCSD and as an employee at Isis Pharmaceuticals, Inc. The other authors report no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeang, C., Cotter, B. & Tsimikas, S. Experimental Animal Models Evaluating the Causal Role of Lipoprotein(a) in Atherosclerosis and Aortic Stenosis. Cardiovasc Drugs Ther 30, 75–85 (2016). https://doi.org/10.1007/s10557-015-6634-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-015-6634-1

Keywords

Navigation