Skip to main content

Advertisement

Log in

ATM Protein Kinase Signaling, Type 2 Diabetes and Cardiovascular Disease

  • REVIEW ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The ataxia-telangiectasia mutated (ATM) protein kinase is well known to play a significant role in the response to double stranded DNA breaks in the nucleus. Recently, it has become apparent that ATM is also involved in a large number of cytoplasmic processes and responses, some of which may contribute to metabolic and cardiovascular complications when disrupted. Due to its involvement in these processes, therapeutic activation of ATM could potentially be a novel approach for the prevention or treatment of cardiovascular disease. However, relatively little is currently known about the cardiovascular role of ATM. In this review, we highlight studies that have shed some light on the role of ATM in the cardiovascular context, namely in oxidative stress, atherosclerosis and metabolism, insulin resistance and cardiac remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia-telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268:1749–53.

    Article  CAS  PubMed  Google Scholar 

  2. Su Y, Swift M. Mortality rates among carriers of ataxia-telangiectasia mutant alleles. Ann Intern Med. 2000;133:770–8.

    Article  CAS  PubMed  Google Scholar 

  3. Rasio D, Negrini M, Croce CM. Genomic organization of the ATM locus involved in ataxia-telangiectasia. Cancer Res. 1995;55:6053–7.

    CAS  PubMed  Google Scholar 

  4. Swift M, Morrel D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet. 1986;39:573–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499–506.

    Article  CAS  PubMed  Google Scholar 

  6. Yang DQ, Halaby M, Li Y, Hibmam JC, Burn P. Cytoplasmic ATM protein kinase: an emerging therapeutic target for diabetes, cancer and neuronal degeneration. Drug Discov Today. 2011;16:332–8.

    Article  CAS  PubMed  Google Scholar 

  7. Swift M, Chase C. Cancer and cardiac deaths in obligatory ataxia-telangiectasia heterozygotes. Lancet. 1983;321:1049–50.

    Article  Google Scholar 

  8. Kim ST, Lim DS, Canman CE, Kastan MB. Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem. 1999;274:37538–43.

    Article  CAS  PubMed  Google Scholar 

  9. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress. Science. 2010;330:517–21.

    Article  CAS  PubMed  Google Scholar 

  10. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 2003;22:5612–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Pellegrini M, Celeste A, Didilippantonio S, et al. Autophosphorylation at serine 1987 is dispensable for murine ATM activation in vivo. Nature. 2006;443:222–5.

    Article  CAS  PubMed  Google Scholar 

  12. Goodarzi AA, Jonnalagadda JC, Douglas P, et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J. 2004;23:4451–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Sheeram S, Demidov ON, Hee WK, et al. Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell. 2006;23:757–64.

    Article  Google Scholar 

  14. Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6.

    Article  CAS  PubMed  Google Scholar 

  15. Ditch S, Paull TT. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci. 2012;37:15–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ambrose M, Gatti RA. Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions. Blood. 2013;121:4036–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Semlitsch M, Shackelford RE, Zirkl S, Sattler W, Malle E. ATM protects against oxidative stress induced by oxidized low-density lipoprotein. DNA Repair. 2011;10:848–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Moll Cell Biol. 2013;14:197–210.

    Article  CAS  Google Scholar 

  19. Stagni V, Santini S, Barila D. Molecular bases of Ataxia Telangiectasia: one kinase multiple functions. In: Puiu M, editor. Genet Disord. InTech; 2013. doi:10.5772/54045.

  20. Ambrose M, Goldstine JV, Gatti RA. Intrinsic mitochondrial dysfunctions in ATM-deficient lymphoblastoid cells. Hum Mol Genet. 2007;16:2154–64.

    Article  CAS  PubMed  Google Scholar 

  21. Valentin-Vega YA, MacLean KH, Tait-Mulder J, et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood. 2012;199:1490–500.

    Article  Google Scholar 

  22. Rosenberg P. Mitochondrial dysfunction and heart disease. Mitochondrion. 2004;4:621–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ousset M, Bouquet F, Fallone F, et al. Loss of ATM positively regulates the expression of hypoxia inducible factor 1 (HIF-1) through oxidative stress. Cell Cycle. 2010;9:2814–22.

    Article  CAS  PubMed  Google Scholar 

  24. Watters DJ. Oxidative stress in ataxia telangiectasia. Redox Rep. 2003;8:23–9.

    Article  CAS  PubMed  Google Scholar 

  25. Arrigoni O, De Tullio MC. Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta. 2002;1569:1–9.

    Article  CAS  PubMed  Google Scholar 

  26. Buse MG, Robinson KA, Marshall BA, Mueckler M. Differential effects of GLUT1 or GLUT4 overexpression on hexosamine biosynthesis by muscles of transgenic mice. J Biol Chem. 1996;271:23197–202.

    Article  CAS  PubMed  Google Scholar 

  27. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 2004;56:549–80.

    Article  CAS  PubMed  Google Scholar 

  28. Khurana R, Simons M, Martin JF, Zachary IC. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation. 2005;112:1813–24.

    Article  PubMed  Google Scholar 

  29. van Weel V, Deckers MML, Grimbergen JM, et al. Vascular endothelial growth factor overexpression in ischemic skeletal muscle enhances myoglobin expression in vivo. Circ Res. 2004;95:58–66.

    Article  PubMed  Google Scholar 

  30. Ordway GA, Garry DJ. Myoglobin: an essential hemoprotein in striated muscle. J Exp Biol. 2004;207:3441–6.

    Article  CAS  PubMed  Google Scholar 

  31. Schneider JG, Finck BN, Ren J, et al. ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metab. 2006;4:377–89.

    Article  CAS  PubMed  Google Scholar 

  32. Mead JR, Ramji DP. The pivotal role of lipoprotein lipase in atherosclerosis. Cardiovasc Res. 2002;55:261–9.

    Article  CAS  PubMed  Google Scholar 

  33. Mercer JR, Cheng KK, Figg N, et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res. 2010;107:1021–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wu D, Yang H, Xiang W, et al. Heterozygous mutation of ataxia-telangiectasia mutated gene aggravates hypercholesterolemia in apoE-deficient mice. J Lipid Res. 2005;46:1380–7.

    Article  CAS  PubMed  Google Scholar 

  35. Armata HJ, Golebiowski D, Jung DY, Ko HJ, Kim JK, Sluss HK. Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis. Mol Cell Biol. 2010;30:5787–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Razani B, Feng C, Semenkovich CF. p53 is required for chloroquine-induced atheroprotection but not insulin sensitization. J Lipid Res. 2010;51:1738–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Foster CR, Singh M, Subramanian V, Singh K. Ataxia telangiectasia mutated kinase plays a protective role in β-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Mol Cell Biochem. 2011;353:13–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Krüger A, Ralser M. ATM is a redox sensor linking genome stability and carbon metabolism. Sci Signal. 2011;4:pe17.

    Article  PubMed  Google Scholar 

  39. Alexander A, Cai SL, Kim J, et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A. 2010;107:4153–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Cam H, Easton JB, High A, Houghton PJ. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1α. Mol Cell. 2010;40:509–20.

    Article  CAS  PubMed  Google Scholar 

  41. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008;22:239–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Viniegra JG, Martínez N, Modirassari P, et al. Full activation of PKB/Akt in response to insulin or ionizing radiation is mediated through ATM. J Biol Chem. 2005;280:4029–36.

    Article  CAS  PubMed  Google Scholar 

  43. Golding SE, Rosenberg E, Valerie N, et al. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol Cancer Ther. 2009;8:2894–902.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Jeong I, Patel AY, Zhang Z, et al. Role of ataxia telangiectasia mutated in insulin signaling of muscle-derived cell lines and mouse soleus. Acta Physiol. 2010;198:465–75.

    Article  CAS  Google Scholar 

  45. Sano H, Kane S, Sano E, et al. Insulin-stimulated phosphorylation of a rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem. 2003;278:14599–602.

    Article  CAS  PubMed  Google Scholar 

  46. Consentino C, Grieco D, Constanzo V. ATM activates the pentose phosphate pathway promoting anti-oxidant defense and DNA repair. EMBO J. 2011;30:546–55.

    Article  Google Scholar 

  47. Katare R, Oikawa A, Cesselli D, et al. Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes. Cardiovasc Res. 2013;97:55–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res. 2000;87:1123–32.

    Article  CAS  PubMed  Google Scholar 

  49. Gray S, Kim JK. New insights into insulin resistance in the diabetic heart. Trends Endocrinol Metab. 2011;22:394–403.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Xie Z, He C, Zou MH. AMP-activated protein kinase modulates cardiac autophagy in diabetic cardiomyopathy. Autophagy. 2011;7:1254–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Das A, Durrant D, Koka S, Salloum FN, Xi L, Kukreja RC. mTOR inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression. J Biol Chem. 2013;289:4145–60.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Bloch-Damti A, Bashan N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid Redox Signal. 2005;7:1553–67.

    Article  CAS  PubMed  Google Scholar 

  53. Evans JL, Maddux BA, Goldfin ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal. 2005;7:1040–52.

    Article  CAS  PubMed  Google Scholar 

  54. Le Guezennec X, Brichkina A, Huang YF, Kostromina E, Han W, Bulavin DV. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab. 2012;16:68–80.

    Article  PubMed  Google Scholar 

  55. Mercer JR, Yu E, Figg N, et al. The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/−/ApoE−/− mice. Free Radic Biol Med. 2012;52:841–9.

    Article  CAS  PubMed  Google Scholar 

  56. Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420:333–6.

    Article  CAS  PubMed  Google Scholar 

  57. Parthasarathy S, Steinberg D, Witzium JL. The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis. Annu Rev Med. 1992;43:219–25.

    Article  CAS  PubMed  Google Scholar 

  58. Nakagawa K, Taya Y, Tamai K, Yamaizumi M. Requirement of ATM in phosphorylation of the human p53 protein at serine 15 following DNA double-strand breaks. Mol Cell Biol. 1999;19:2828–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Miles PD, Treuner K, Latronica M, Olefsky JM, Barlow C. Impaired insulin secretion in a mouse model of ataxia telangiectasia. Am J Physiol Endocrynol Metab. 2007;293:E70–4.

    Article  CAS  Google Scholar 

  60. Halaby MJ, Hibma JC, He J, Yang DQ. ATM protein kinase mediates full activation of Akt and regulates glucose transporter 4 translocation by insulin in muscle cells. Cell Signal. 2008;20:1555–63.

    Article  CAS  PubMed  Google Scholar 

  61. Yang DQ, Kastan MB. Participation of ATM in insulin signaling through phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol. 2000;2:893–8.

    Article  CAS  PubMed  Google Scholar 

  62. Ching JK, Luebbert SH, Collins RL, et al. Ataxia telangiectasia mutated impacts insulin-like growth factor 1 signaling in skeletal muscle. Exp Physiol. 2013;98:526–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Peretz S, Jensen R, Baserga R, Glazer PM. ATM-dependent expression of the insulin-like growth factor-I receptor in a pathway regulating radiation response. Proc Natl Acad Sci U S A. 2001;98:1676–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Andrisse S, Patel GD, Chen JE, et al. ATM and GLUT1-S490 phosphorylation regulate GLUT1 mediated transport in skeletal muscle. PLoS One. 2013;8:e66027.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Zhou K, Bellenguez C, Spencer CCA, et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes: the GoDARTS and UKPDS Diabetes Pharmacogenetics Study Group and the Wellcome Trust Case Control Consortium 2. Nat Genet. 2011;43:117–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Birnbaum MJ, Shaw RJ. Drugs, diabetes and cancer: variation in a genomic region that contains the cancer-associated gene ATM affects a patient’s response to the diabetes drug metformin. Two experts discuss the implications for understanding diabetes and the link to cancer. Nature. 2011;470:338–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Barlow C, Hirotsune S, Paylor R, et al. ATM-deficient mice: a paradigm of ataxia telangiectasia. Cell. 1996;86:159–71.

    Article  CAS  PubMed  Google Scholar 

  68. Morrel D, Cromartie E, Swift M. Mortality and cancer incidence in 265 patients with ataxia-telangiectasia. J Natl Cancer Inst. 1986;77:89–92.

    Google Scholar 

  69. Shoelson SE. Banking on ATM as a new target in metabolic syndrome. Cell Metab. 2002;4:337–8.

    Article  Google Scholar 

  70. Gertz EW, Wisneski JA, Stanley WC, Neese RA. Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments. J Clin Invest. 1988;82:2017–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Traegtmeyer H. Metabolism—the lost child of cardiology. J Am Coll Cardiol. 2000;36:1386–8.

    Article  Google Scholar 

  72. Opie LH, Lopaschuk GD. Fuels: aerobic and anaerobic metabolism. In: Opie LH, editor. Heart physiology: from cell to circulation. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 306–54.

    Google Scholar 

  73. Eguchi K, Boden-Albala B, Jin Z, et al. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am J Cardiol. 2008;101:1787–91.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Ghee M, Baker H, Miller JC, Ziff EB. AP-1, CREB and CBP transcription factors differentially regulate the tyrosine hydroxylase gene. Brain Res Mol Brain Res. 1998;55:101–14.

    Article  CAS  PubMed  Google Scholar 

  75. Gueven N, Keating K, Fukao T, et al. Site-directed mutagenesis of the ATM promoter: consequences for response to proliferation and ionizing radiation. Genes Chromosome Cancer. 2003;38:157–67.

    Article  CAS  Google Scholar 

  76. Shizukuda Y, Buttrick PM, Geenen DL, Borczuk AC, Kitsis RN, Sonnenblick EH. β-adrenergic stimulation causes cardiocyte apoptosis: influence of tachycardia and hypertrophy. Am J Physiol. 1998;275:H961–8.

    CAS  PubMed  Google Scholar 

  77. Foster CR, Zha Q, Daniel LL, Singh M, Singh K. Lack of ataxia telangiectasia mutated kinase induces structural and functional changes in the heart: role in β-adrenergic receptor-stimulated apoptosis. Exp Physiol. 2012;97:506–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Spinale FG. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res. 2002;90:520–30.

    Article  CAS  PubMed  Google Scholar 

  79. Foster CR, Daniel LL, Daniels CR, Dalal S, Singh M, Singh K. Deficiency of ataxia telangiectasia mutated kinase modulates cardiac remodeling following myocardial infarction: involvement in fibrosis and apoptosis. PLoS One. 2013;8:e83513.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Vecchio D, Frosina G. Targeting the ataxia telangiectasia mutated protein in cancer therapy. Curr Drug Targets. 2014;PMID 25382204.

  81. Lee JH, Guo Z, Myler LR, Zheng S, Paull TT. Direct activation of ATM by resveratrol under oxidizing conditions. PLoS One. 2014;9:e97969.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolandi Espach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espach, Y., Lochner, A., Strijdom, H. et al. ATM Protein Kinase Signaling, Type 2 Diabetes and Cardiovascular Disease. Cardiovasc Drugs Ther 29, 51–58 (2015). https://doi.org/10.1007/s10557-015-6571-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-015-6571-z

Keywords

Navigation